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EXECUTIVE SUMMARY

The outcome of armed conflict always depends on the decisions made by the

participants as the conflict unfolds. As part of its program in mathematics,

the Office of Naval Research (ONR) has sponsored work to develop novel models

of decisionmaking during conflict, in order to broaden understanding of the

factors leading to alternative outcomes. In this final report, prepared under

contract N00014-84-C-0458 for ONR, new results in decision modeling anO new

results obtained using these models are described.

The Navy needs a predictIve mathematical theory of decislormaking in

dynamic, multIperson decision situations to better understand command and

control in Naval conflict. Models representing both friendly and hostile

forces, both sides distributed over the sea with limited communications among

participants on each side, must ultimately be treated by formal mathematical

theory to provide a sound basis for future system design. The theory should

combine results from the mathematics of multiperson declsonmaking with

results from behavioral theories of human decislonmaking under uncertainty.

This novel combination of approaches would provide valuable qualitative and

quantitative insights into the behavior of distributed decisionmakers in com-

plex situations of interest, to the Navy. The work reported here is a contri-

bution towards the multidisciplinary theoretical extension needed, drawing on

existing prescriptive mathematical approaches to multiperson decisionmaking

and on descriptive approaches to human behavior modeling reported in the beha-

vioral decision theory literature.

IU



Mathematical game theory studies decisionmaking in problems with Cultiple

decisionmakers. Game theoretic results characterize decision strategies and

outcomes which are rational in the context of specific quantitative behavioral

norms. Hence, the purpose of game theory is to prescribe "rational behavior"

in a multiperson decision situation. However, game theory has several short-

comings in providing a predictive theory' of multiperson decisionmaking:

1. It is based on the assumption that all decisions will be
strictly rational decisions, allowing for no deviations
from rationality.

"2. Rational behavior is defined in terms of Von Neumann's As
maximum expected utility paradigm [I1.

3. It assumes that every decisionmaker has a common represen-
tation of the overall decision problem (the rules of the "
game and the game parameters are common knowledge [21).

4. *It assumes that players are fully-committed to select
future decisions in accordance with apriori-selected
strategies. It does not permit adaptive decisionmaking

.behavior.

5. It assumes that processing of information by the decision-
makers will be done optimally, in a Bayesian framework (3].

6. It does not explicitly consider human limitations and beha-
vioral trends in information processing, option evaluation,
and action selection.

Empirical research on human declslonmaking [41,[51, has established that all

of the above assumptions are systematically violated in specific situations.

This work has led to several extensions of the basic framework of game theory.

For example, the recent research in perfect, proper and sequential equilibria

in nonzero sum games 161-[8] is concerned with defining rational behavior in

a way which takes into account the possibility of "irrational" actions. The

work of Aumann and Maschler [9'], Ho [10], and others [111 studies games where

the assumption of prior committment to apriori strategies was relaxed. The
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work of Harsanyi 112),[131, and others (Q151-116]) o- games of incomplete IsI

aimed at relaxing the assumption that every decisionmaker has a common repre-

sentation of the overall problem. The work of Kadane and Lakkey [171,118] and

Wilson [19) advocates 'viewing the multiperson decision problem as a set of

subjective single person decision problems, where each participant models the'

expected actions of the other decisionmakers by subjective probabilities.

The purposeof our research effort was to further develop the mathemat-

ical theories of multiperson decisionmaking by explicitly considering multi-

person decision models which incorporate human limitations and behavioral

trends in Information processing, option evaluation, and action selection.

It Is our opinion that a predictive, quantitative theory of multiperson dect-

sionmaking must adopt the viewpoint, of a person evaluating his decision alter-

natives In a real-time, dynamically-evolving situation. Thus, at any time, a

human's decision problem separates Into three stages:

1. How he interprets the Information he's observed in the past,

2. How he ranks his possible dectsions at the present, time, and

S3.' How he selects a decision based on these rankings.

These stages correspond to the last three stages in the SHOR paradigm for

* human decisionmaking discussed in Wohl [20). The SHOR paradigm is illustrated

* Fig. 1. Using this paradig8, we were able to organize the classes of human

behavioral traits which should be considered in the multiperson decision

Smodels. In the first stage, we had to consider biases and limitations in the

interpretation and combination of information obtained through observations of

Sthe decision problem. In the second stage, we had to consider how individual

decisiomakers would evaluate their choices; behavioral decision theory has

proposed a number of competing axiomatic models (e.g., [211) for this process.

, 3
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In the last stage, we had to consider how actions were selected based on their

evaluation (e.g., [22],[231).

Starting from this premise, we began our research by reviewing available

results on human behavior in information processing, option evaluation and

response selection. A brief summary of some of these results Is inclided in

Appendix A. Essentially, the literature contains ample evidence that one of

the fundamental atsumptions of game theory, defining rational behavior in

terms of maximization of expected utility, is systematically violated (see

Machina's survey [24]). Thus, many alternative formulations for prescribing

rational behavior or describing human behavior have been proposed ([4),15]).'

Researchers such as Kadane and Larkey (17] have gone as far as suggesting

that a prescriptive theory for human decisionmaking in multiperson decision

problems should adopt a single decisionmaker perspective, where the actions

of other decisionmakers are modeled by a subjective probability ovwr the

possible set of actions. There has been considerable debate on this approach,

rentering on whether the subjective probability should depend on the current

choice of action of the decisionmaker, and on how such subjective probabil-

ities are computed 125]-[28]).

The next step in our research addressed the key philosophical question

concerning any theory of multiperson decisicimaking, namely: What Informa-

tion does each decisionmaker have concerning the behavioral characteristics

of the other decisionmakers? To illustrate the importance of this question,

consider the game-theoretic model. In game theory, this information is part

of the rules of the game. Hence, this information is represented as common

knowledge. Specifically, the utility function of each decisionmaker is known

to every other decisionmaker. Using Harsanyi's theory of games of incomplete

5
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information 112], this assumption can be relaxed so that an individual's

utility function is known only probabilistically to other decisionmakers.

However, this probability distribution is again common knowledge; this means,

for example, that decisionmaker I has perfect knowledge of how decisionmaker

2 models decisionmaker 1' behavior. Thus, in Harsanyi's theory of games of

incomplete information, the assumption of common knowledge has been moded one

level higher, to common knowledge of a probability distribution rather than of

a specific value. However, this assumption still Implies that each decision-

maker knows very well the thinking process of other decisionmakers.

Given the multiple possibilities for models of human decisionmaking -"

described in Appendix A, we felt that the specific parameters of an individual '

decisionmaker would be known primarily to himself, and not to the other deci-

sionmakers. There are four possible classes of approaches for mathematically r

modeling the information which each decisionmaker has concerning the beha-

vioral characteristics of the other decisionmakers. These are:

1. Common knowledge, •.

2. Private knowledge with imperfect information, V.

3. Private knowledge with incomplete information, and

4. Secret knowledge.

Modeling behavioral characteristics information as common knowledge assumes

that each decisionmaker knows every other dectsionmaker's behavioral charac-

teristics, and this information is common knowledge in the sense of [2].

Modeling the information as private knowledge with imperfect information means

that there Is a joint probability distribution over all the decisionmakers'

possible behavioral characteristics. This probability distribution is itself .*.

common knowledge among decisionmakers; 'in addition, each decisionmaker is

6
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provided with partial information concerning the 'behavioral characteristics

of the other decisionmakers.

Modeling the information as private knowledge with incomplete information ____

Is similar, except that there is no overall joint probability distribution

which is common knowledge; in this case, each decisionmaker must subjectively

construct this probability distribution. Modeling this information as secret

information means that each decisionmaker has a subjective model of every

other decisionmaker, and any differences among the models held by difierent

decisionmakers is secret knowledge.

From a mathematical perspective, modeling human characteristics of deci-

sionmakers as common knowledge is the approach which Is most akin to game

theory. Essentially, human characteristics of decisionmakers would be incor-

porated into the rules of the game. For example, risk-averse behavior [24]

would be represented as a factor in a decisionmaker's utility; similarly, any

biases in information processing would be Incorporated in the rules for up-

dating of probabilities. Such modification to the expected utility paradigm

vauld result in the violation of several important game theory results. For

example, Von Neumann's normalization principle [1), which states that a game

Is extensive form can be reduced to an equivalent game in normal form, may not

be applicable if probabilities do not evolve according to Bayes' rule or if

strategies are not selected according to the expected utility model.

Although convenient from a mathematical perspective, the common knowledge

approach is the least satisfactory frcm a modeling perspective, because it

assumes that each decisionmaker has a very accurate model of the other deci-

sionmakers. The private knowledge with imperfect information approach makes '

7 ..
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weaker assumptions concerning the knowledge provided to decisionmakers cot.

cerning the knowledge provided to decisionmakers concerning the behavior ot L L-ý

other decislonmakers. However, the imperfect knowledge is modeled by a proba-

bility distribution which is common knowledge. It is not clear that in multi-

person decision situations, such a state of common knowledge can be achieved

without an extensive cooperative bargaining session to agree on this proba- r

bility. For many military situations of interest, this may not be possible.

From a practical perspective, the last two approaches capture the sub-

jective nature of human decisionmaking best. In the private knovledge with

incomplete information spproach, each decisionmaker can subjectively estimate

a probability distribution for the decisionmaking characteristics of every.

other decisionmaker. However, these estimates are subjective estimates, and

there is no reason that they must be consistent across decisionmakers. In the

secret knowledge approach, each decisionmaker models the human characteristics

of other decisionmakers as values rather than probability distributions and

assumes that these values are correct. Again, the fact that these values may ,

be incorrect is secret knowledge to each decisionmaker. In both of these

apptoaches, each decislonmaker has a subjective model of how he and other,

decisionmakers will make decisions. However, these models need not be consis-

tent acrcss decisionmakers. This leads to a number of interesting questions

which we . "dressed in our research.

1. L;) qualitative results characterizing outcomes of multiperson
decision situations changk due to the subjective model dif-
fý.rences among decisionmakers?.

2. How do decisionmakers interpret information they receive
from other decisionmakers?

3. How do they incorporate this informatio, to form their
decisions?

8



4. Do the decisionmakers realize during the play of the game
that their decision models are inconsistent?

5. Do those inconsistencies prevent the decisionmakers from
reaching a desirable outcome?

6. When inconsistencies are detected, how do the decisionmakers
modify their subjective models?

In order to study these questions in a specific context, we considered

% two classes of multiperson decisionmaking problems:

1. Consensus Problems, and

2. Two-Person nonzero sum games of incomplete information.

In consensus problems, multiple decisionmakers with private information and

a common goal are tr!ing to each a consensus decision by proposing tentative

decisions recursively among themselves. Consensus problems are a simple class

of cooperative decision problems emphasizing the implicit Information transfer

among decisionmakers through the choice of dec'•ions (signaling). Under

simple communication conditions, the results -f [29]-1341 establish that, in

the absence of suijective model differences, a consensus is always reached.

However, differences in subjective models among decislonmakexd may lead to

misunderstandings in the signaling processes, thereby preventing the decision-

makers from reaching a consensus.

Our first investigation of these problems is summarized in the paper in

Appendix B. In this paper, we show that, for a specific consensus problem of

estimating the probability of an event, when the individual differences among

decisionmakers are secret knowledge, the consensus process can reach a state

of contradiction. In this state, the signals from one decisionmaker cannot

be interpreted by another decisionmaker due to the secret difference between

'4 their models. Thus, the secret information that the subjective models were

9.



different becomes common knowledge. In Appendix C, we show that this phenom-

enon is typical of general consensus problems when differences in subjective

decisionmakers are secret knowledge. Furthermore, we establish that there are

only two classes of qualititive outcomes possible: a consensus is reached,

so the dlifferences in subjective modeis remain secret knowledge, or a contra-'

diction is reached, so the differences in subjective models become common

knowledge.

One question which was not addressed in the results in Appendices B and

C concerned the likelihood of the two classes of outcomes. For specific

problems, how likely wvs a contradictory outcome? In Appendix D, we develop

a number of results which provide answers to this question.' Specifically, we

derive conditions, depending on the type of consensus problem, which charac-

terize whether the set of subjective models which result in contradictions is

a dense set in the set of possible models, using a specific topology. We also

derive conditions which characterize when the consensus process is robust to-

small differences in subjective models.

In the paper in Appendix D, we also study the consensus problem when the

* differences among subjective models are represented as private information

with either incomplete or imperfect k.nowledge. That is, there is a second-

order probability model which describes each decisionmaker's subjective

,beliefs concerning the decIslon model of the other decisionmakers. The

results in Appendix D establish that the two classes of qualitative outcomes

described previously can occur. In addition, there is yet a third'class of

outcomes, which can be described as follows. In these outcomes, the consensus

process reaches a state where each decisionmaker cannot learn any additional

10



information from the tentative decisions communicated by other decisionmakers.

*e: However, there is a significant difference in information among decision-

p makers, so that a consensus ts not reached.

The result in Appendix D is very surprising. ConsiA-r a consensus pro-

* tcess where two decisionmakers have exactly the same decision model. According

to the results of 1321. a consensus will be reached eventually. However,

,•.. assume now that both decislonmakers have exactly the same decision model, but

"they do not know it for certain! The results in Appendix D show that, in this

situation, this lack of certainty can lead the consensus ptocess to a stalled

state, from which a consensus cannot be reached. In essence, the lack of

certainty prevents the consensus process from transmitting enough information

to achieve a consensus outcome.

This result has important implications for more general classes of multi-

person decision problems, such as cooperative bargaining problems. Loosely

Sg interpreted, It states that the presence of uncertainty concerning behavioral

characteristics of the bargaining decisionmakers can lead to a stalemate in

"the bargaining process. In practical situations, this stalemate can be broken

by changing the nature of the bargaining process, such as bringing in an

arbitrator.

." In the area of nonzero sum games of Incomplete information, we considered

a simple class of two-person symmetric games. We developed an axiomatic for-

mulation describing the subjective decision model approach discussed above.

Based on this formulation, we studied the properties of the rational strate-

gles and outcomes of both the static and Infinitely-repeated versionb of the

•. game. The results in Appendix E show that, under the assumpZion that each

! 1
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decisionmaker is subjectivelr rational according to his own internal model*

,in the static case, the existence of differences between subjective models

becomes com-n knowledge. However, in the infinitely-repeated game, these

d.fferencea _re ameliorated during the play of the game, so thot there exist

core equilibrium strategies which are rational from each decisionmaker's

perspective. In Appendix E, we show that whether the subjective ditrerences

become common knowledge or cannot depend on the specific bargaintng vtzategy

used for selecting among potential core equilibrtum outcomes.

In sun, our research h&s investigated two classes of mathematical models

of ialtiperson decisionmaking In dynamic situations vhich focus on the subjec-

tive nature of human behavioral characteristics in information processing,

option evaluation and action selection. Our mathematical formulation is sim-

ilar in spirit to Krdane and Lerkey's 117], in that individual rationality is

defined i terms of subjective models. However, we do not propose to replace

the game-theoretic models in these subjective models by decision theory models

using subjective probabilities of action for other decisionmakers. Instead,

we have developed a mathematical formulation which allows for differences in

subjective game theory models among decisionmakers. Our research focused on

studying the qualitative implicaticns of these differences in cooperative and

nonooporattve paradigms. The results developed in the appendices to this

report shed considerable light on these implication# in dynamic decisicnmaking

under uncertainty.

Nevertheless, many technical problems remain to be addressed. Perhaps

the key question remaining unresolved is how to effect the resolution )f model,

*For an interesting discussion of the application of t.ternal models to repre-
senting Navy Commard and Control decisionmaking, see Athans 135].

12



differences once they are discovered. The approach proposed in Appendix D

requires that an inference problem be started at that time to properly iden-

tify the model differences. This approach does not indicate how to resolve

these differences to achieve a desirable qualitative outcome, either through

a common calibration process or a bargaining process.

The s•bjecti.•e game framework which was used throug.iout our research

provides a foundation for the development of a quantitative predictive theory

of maltiperson decisionmaking. In our opinion, the next major step is the

developme-at of specific behavioral theories and mathematical models of these

theories for human decisionmaking in dynamic sultiperson decision situations.

As seen in the survey In Appendix A, the state of the research in individual

decisiort theory has focused on developing alternatives to the expected utility

paradigm [11; the numerous competing alternatives must be narrowed down and

Shown to be superior to the expected utility paradigm. Furthermore, addl-

Sthual research is needed to focus on the multiperson aspects of behavioral

thi.orlas of Information processing and option selection. Based on these

results, specific quantitative models of multiperson decislonmaking can be

developed and evaluated in empirical research. These research directions are

being followed in many research programs, so that progress towards the devel-

opment of a quantitative predictive theory of multiperson decisionmaking will

continue.

a
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APPENDIX A

AN OVERVIEW OF RESULTS IN HUMAN DECISIONMAKING

A.-1 INTRODUCTION

In this appendix, we overview some of the principal results available in

the literature concerning empirical studies of how humans make decisions. We

have organized these results into two sections: Human Inference, dealing with

the problem of situation assessment and hypothesis evaluations, and utility

theory, dealing with the problems of option evaluation and option selection.

For a more detailed review of these disciplines the reader is'referre' to the

excellent surveys and books by Rapoport and Wallsten [1972], Slovic, Fishoff

and iUchtenstein (1977], tinhorn and Rogarth [1981), Kahneman, Slovic and

Tversky 11982], Schoemaker [1982], Fishburn,[1982] and Machina (1983].

- &A.2 HUMAN BEHAVIOR IN SITUATION ASSESSMENT

Since most of the decision tasks involve uncertainty, considerable effort

has been spent in studying how people formulate and change their opinions

about uncertain hypotheses. The literature in the area of subjective proba-

bility assessment and revision of opinion shows two different approaches to

the modeling problem. The first approach, advanced by statisticians and

psychologists, is based on probability theory and statistics and relies on

the concept of a "statistical wan" - Ln optimal, Bayesian inferer (observer).

Bayes' rule provides a normative representation of how a decisionmaker should

revise h'is probability estimates on the basis of new information. The

A-i
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descriptive considerations have been handled primarily by adjusting the

functional form of the normative model. This approach led to the study of

"conservatism" - a suboptimal human behavior that produces posterior proba-

bilities nearer to the prior prc¢ablllties than those specified by Bayes'

rule (Edwards and Phillips [1964); Peterson and Beach 119671). The second

approach, proposed mainly by psychologists, argues that the human is a

selective, sequential information processox with limited capacity (Hogarth

(1975]). It is hypothesized that this limited Information-process!ng capacity

leads him to apply simple heuristics and cognitive strategies vhich reduce

the complex tasks of assessing probabilities and predicting values to simpler

judgmental operations. Much of the work on this judgmental heuristics has

been performed by Tversky and Kahneman [19711, (1973], [1974]. They demon-

strated that three judge-rntal heuristics - representativeness, availability,

adjustments and anchoring - C•termlne probabilistic inferences In many tasks.

However, these findings can only u- described in qualitative terms and, as

yet, no quantitative descriptive theor) based on the heuristics has emerged.

A-2.1 Bayesian Revision of Opinion

Bayes' rule has provided much of the impetus to the research an

normative-descriptive modeling of judgmental processes. A basic hypothesis

. is that opinions (judgments) should be expressed in terms of subjectIve proba-

bilities and that the optimal revision of such opinions must be accomplished

via Bayes' rule'. A considerable number of studies, involving mainly binomial

(so called. "bookbag and poker chip" games) and multinomial tasks, have zom-

pared subjects' numerical probability assessments to those predicted by Bayes'

rule (Edwards and Phillips 119641; Peterson'and Beach (19671, Donnel and

Duchrame [1975]). A general, but by no means universal, conclusion has been

A-2
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that the estimates were monotonically related to those specified by Bayes'

rule, but were coriservative. That is, the posterior probabilities estimated

by subjects were nearer to the prior probabilities than those obtained via

Bayes' rule. Several explanations are offered for the phenomena of conserva-

tism. It is believed that conservatism is due, in small part, to procedural

variables (e.g., payoffs and incentives, sample size, sequential ordering of

the data, prior probabilities, etc.) and, in large part, to subjects' misper-

ception of the underlying sompling 'distributions, misaggregation of the data,

or simply response bias. Mlsperception is generally attributed to the mis-

match between subjective and actual (objective) probability distributions

(Peterson, Duchrame and Edwards [1968]; Wheeler and Beach [1968),

Lichtenstein and Feeney 11968]), and to the human tendency to discount the

importance of rare events when they occur (Vlek and Van der Hejden [1967]).

Misaggregation refers to the nonoptimal sequential revision of subjective

probabilities and has been advanced as the major source of conservatism

primarily by Edwards and hls associates (Edwar-... [1(968], Edwards, Phillips,

Hayes and Goodman 11968]). The notion of response bias was advanced by

Peterson 11968] and is related to subjects' unwillingness to use extreme

numbers and odds. A comprehensive review of the issue of conservatism is

4provided by Slovi and Lichtenstein J1971), Rapoport'and Wallsten 11972] and

Slovic, Fishoff and Lichtenstein (1977].

Along different lines, Kahneman and Tversky 119731, Tversky and Kahneman

[1974J and Grether [19801 among others, have found that probability updating

underweighs prior information and overweighs the representativenesa of the

current sample. This phenomena is similar to Tversky and Kahneman's [19711

- A-3



law of small numbers. Tversky and Kahneman [1983] have also found biases in

the combination of evidence from independent and correlated sources.

In an attempt to overcome the descriptive deficiencies of the Bayesian

model, several empirical modifications to Bayes' rule have been offered.

These modifications can be embedded into a generalized version of Bayes' rule,

where an additional term is multiplied to the likelihood of each hypothesis.

This term is called a disability or impediment function in Edwards and

Phillips 11964], and is supposed to capture the suboptimal nature of human

Information processing (Snapper and Frybach [1971]).

Although Bayesian revision of opinion can be studied as a separate

phenomena, it is most useful when interwoven with decisionmaking and action

selection. The posterior yrobabilities of various hypotheses (states of

nature) can be used, in combination with information about payoffs associated

with various decisions and states of nature, to maximize the (subjective)

expected value, the (subjective) expected utility, or whatever criterion of

optimality. Human performance modeling In signal-detection tasks exemplifies

this approach. The task of the subject is to decide whether or not a signal

5 is present in a block of observations.

Signal-detection experiments have been conducted In a wide variety of

contexts. Examples are experiments in sound localization (Voelcker 11961]),

detection of movement (Kinchela and Allen [1969)), speech recognition (Egan,

et al. [1961]), and recognition of memorized words (Parks [19661). A con-

prehensive exposition of signal-detection theory and psychophysics has been

"provided by Green and Swets [1966], and a fine summary of the theory is pro-

vided by Sheridan and Farrel [1974].
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The experimental results show that the human performance is monotonically

related to those predicted by the model. It is possible to manipulate subjec-

tive decision thresholds (criteria) by varying prior probabilities and pay-
Jq

offs. However, the amount of change has been found to be less than optimal.

The subjects also have difficulty aggregating information across a sequence

of trials (Swets and Green 119611) - a tendency similar to conservatism in

Bayesian revision of opinion.

An additional effect in human inference which cannot be represented uring

impediment funtions is the asymmetry between effect-cause inferences arl'

cause-effect inferences noted in Ajzen [1977], Tversky and Kahneman [1980a]

and Einhorn and Hogarth [1981). The empirical evidence indicates that infor-

mation which receives a causal interpretation is weighed more heavily in

judgment than information that is diagnostic. Tversky and Kahneman [1980]

correlate their results with previous research (Janis [1972]), (Jervis [1975]) •.

indicating that humans overestimate the accuracy of uncertain models in pre-

dicting behavior, and, when confronted with evidence concerning the errors in

their models, would rather find a plausible explanation than revise their

models. These results are particularly relevant in multiperson decision-

making, where the interactions among decisionmakers force each decisionmaker

to develop internal models of the other decisionmakers.

A.2.2 Judgmental Heuristics and Biases

Recent research on probabilistic judgments has focused on the discovery

and description of heuristics, or simple cognitive strategies, that are em-

ployed in the quantification of uncertainty. Much of this work has been per-

formed by Tversky and Kahneman [1971], [19731, [1974]. Their research centers

A-5
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on the determination of how people evaluare uncertainty rather than how well '6

they evaluate it. Tversky and Kahneman demonstrated, qualitatively, that

three judgmental heuristics- representativeness, availability, adjustment and

anchoring - determine probabilistic judgments in a variety of tasks. These

qualitative findings are potentially useful in the development of a (as yet

elusive) quantitative, descriptive theory of judgment.

I. REPRESENTATIVENESS HYPOTHESES •.

Tversky and Kahneman [1972] hypothesized thnt people evaluata the proba-

bility of an event on the basis of the degree of similaxity between the event

and the evidence they have examined. If the degree of similarity is high, .

then the probability of the event is judged to be high. It was demonstrated 1'

thac the representativeness tauristic can explain people's intuitive predic- -. *

tions that were at variance with the normative judgments. This was accom-

plished by shoving the insensitivity of the representativeness heuristic to

several normatively important factors of judgment, viz., the represee;tative-

ness heuristic is liable to be used when the general properties of events are

emphasized.

ii. AVAILABILITY HEURISTIC •"

With this heuristic, people evaluate the probability of an event on the

basis of the ease with which instances or occurances can be recalled or imag.-

ined. Availability is a valid cue for the assessment of probability because, -

in general, instances of mare frequent events are recalled more easily than

the instances of less frequent events. However, availability is also affected

by other factors unrelated to probability. Consequently, availability heuris-

tic results have been used in systematic biases, some of which follow:

A-6
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(1) Biases due to retrievability of instances: An event whose
Instances are easily recalled will appear more frequently
than an event of equal probability (or frequently) whose
instances are less easily recalled.

(2) Biases due to the effectiveness of a search set: In tasks
requiring the estimates of the relative frequencies of
words, the availability heuristic leads to a judgment that
the frequency of occurrence of abstract words (e.g., love
in love stories) Is much higher than the concrete words(e.g., doo r).

(3) Biases of Imaginability: in tasks in which one must

assess the frequency of an event whose instances are not
stored in memory, one may generate the instances according
to an algorithm or a rule. The ease with which one can
generate instances forms the basis for probability or fre-
quency assessment. Depending on the nature of the rule,
this mode of probability assessment may lead to serious
blases.

(4) Illusory zorrclation: The probability of how frequently
two events co-occur is related to the associative bonr

between them. Strong associates will be judged to have
A occured frequently together.

It is stated that the availability heuristic is used when events are thought

of in terms of specific instances.

5 Iii. ADJUSTMENT AND ANCHORING

With this heuristic, an initial value or anchor is used as a first

approximation to the judgment. The initial value is then adjusted according

to the information provided. Typically, these adjustments are imperfect and

insufficient. Even payoffs for accuracy did not reduce this effect. It was

-* demonstrated that anchzoring could explain people's judgment of the probabill-

ties of conjunctive and disjunctive events and their assessment of the vari-

ability of prcbability distributions.

Studies of decisions under risk indicate that people tend to overestimate

the probability of conjunctive events and underestimate the probability of
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disjunctive events. With regard to the variability of probability distribu-

tions, several investigators found that subjects state more narrow confidence

intervals than are justified by the evidence presented to them. Edwards

[1975] noted that this peculiar'ty is dependent entirely on the format of

questions.

A comprehensive review of heuristics in probabilistic j-Igment has been

provided by Slovit, Fishoff and Lichtenstein [1977]. Although the evidence

suggests that heý-zistics are employed in the assessment of uncertainty, the

specific heuristic selected, the way it is used, and the quality of judgment

it provides, are all highly problem dependent. Therefore, heuristics may be

thought of as explanatory psychole ,ical processes of human probabilistic

judgment and cannot be regarded as a general theory of judgment.

A.3 EMPIRICAL RESEARCH IN UTILITY THEORY

As stated In Machina's survey [1983], the theoretical underpinnings of

single person decsion theory under uncertainty are based on the expected

utility hypothesis of individual' behavior. This hypothesis essentially states

that, when faced with alternative risky prospects over a set of outcomes, a

rational decisionmaker will always choose a prospect which yields the highest

expectation of some utility function defined over the set of outcomes. This

utility function, often called a Von Neumann-Mcrgenstern utility function,

represents the preference of individuals over the different outcomes.

As noted in Fishburn [1982], the existence of Von Neumann-Morgenstern

utility functicn and the validity of the expected utility hypothesis follow

from some variations of the following three axiorrs:
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(1) Transitivity of preferences over prospects; i.e., if
pro. pect A is weakly preferred to prospect 3, and prospect
B is weakly preferred to prospect C, then prospect A is
weakly preferred to prospect C.

'(2) Continuity of preferences are prospects; i.e., if two
sequences of prospects An, Bn are such that An is weakly

Spreferred to Bn, and Aý , Rn converge to A, B respectively
(in the topology of weak convergence), then A is weakly
preferred to B.

(3) Independence of preferences over common alternatives;
i.e., if A is weakly preferred to B, then, ior any C, and
any O< a<l, aA+ (1-a) C is weakly preferred to ab+(l-a)C.

These axioms appear to be simple conditions which the preferences of any

rational decisionmaker should satisfy. Hence, emptrical reuults concerning

the validity of these axioms have been limited. As Machina states: 'Unfortu-

'• nately, though no doubt due in part to the widely held belief in the inherent

"rationality" of the expected utility axioms and in part to the tremendous

! {success of the theoretical developments during this period, the last few

decades have seen nowhere near the amount of empirical estimation and testing

by economists that such a widely used model of behavior ought to have re-

Sceived.r In this section, we will overview some of the available results on

empirical research in utility theory.

One of the first empirical studies concerned the risk behavior of'Indl-

viduals, and their desire both to participate in high-stakes risk-seeking

lotteries, and risk-averse insurance purchases. Friedman and Savage [19481

postulated that the utility function should be a function that is concave,

"locally risk averse", about low wealth levels, and convex (risk seeking) at

high wealth levels. Hence, an individual whose current wealth position was

near the inflection point would indeed purchase both insurance against losses

and lottery tickets offering a small chance of large gains. This utility

function implies two other commonly observed aspects of individual preferences

V• A-9



over uncertain prospects. First, individuals prefer increases in risk in the

upper tails of already random wealth distributions over risk increases in the

lower tails of such distributions. Second, individuals prefer distributions

with large right tails over large left tails (Kraus and Litzenberger (19761,

ScotL -nd Horvath ['19801).

There is evidence to suggest that the Friedman-Savage characterization

of the utility functions (risk-averse over biases, risk-seeking over gains)

is incomplete. Among others, Hershey and Schoemaker (1980a], [1980b] and

Kahneman and Tversky (1979) have found both risk-averse and risk-seeking behav-

j7
y ior In loss situations. Kahneman and Tversky 119791 attribute this observed

behavior to nonlinearitles In the probabilities. Hershey and Schoemaker

11980a] also found that problem representations affected the decisionmaking

behavior. The differences in behavior introduced by problem representation

were obsarved in many other studies (Slovic 11969a], Schoemaker and Kunreuther

(19791, Tversky and Kahneman 11981), Kahneman and Tversky 119821) and led to

the theory of "framing," where the mental point for defining what is a gain

versus what is a loss depends on the specific wording of the decision problem.

There have been a number of empiric&l studies to test the validity of the

"axioms of expected utility theory. The most critical of these axioms is the

"independence axiom. As noted in Fishburn (1982) the independence axiom is the

primary normative assertion of expected utility theory, because it restricts

". the expected utility to be a linear functional of the probability distribution

over the set of outcomes. However, examples such as Allais' paradox 119531

o have produced evidence that this axiom is violated often (Allais and Hagen

11979], Ralffa [1968), Slovic and Tversky 11974], Kahneman and Tversky (1979],

MacCrlmmon and Larsson [19791).
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The assumption of transitive preferences has also been tested empiri-

cally. Early studies in utility theory (Arrow [1951)) indicated that in many

choice situations, preferences were not transitive. Empirical research by

Edwards [1954), Weinstein [1968) and Tversky [1969) have produced examples

of intransitive preferences among alternatives. In subsequent research,

Lichtenstein and Slovic 11973) have found that, when faced with a direct

choice of prospects A and B, decisionmakers prefer A to B even though they

assign a higher certainty equivalent value to B than to A.

Another systematic violation of the expected utility hypothesis arises in

the context of choice. Specifically, the expected utility hypothesis predicts

that the prospect which maximizes expected utility will always be selected.

However, when repeatedly confronted with the same pair of prospects, worded in

the same manner, individuals will not always make the same choice. The early

results of Mosteller and Nogee (19511 established that the Individual's choice

probabilities were continuous, monotonoic functions of the differences in the

expected utilities of the prospects. Explicit models of randomized choice

have been proposed by Luce [1959] and Fishburn 11976). [19781 among others.

At a more fundamental level, the expected utility hypothesis postulates

the existence of probabilities which'obey the standard calculus (Savage

11954)). However, Ellsberg's paradox (Ellsberg [19611) demonstrates that

rational decisonmakers may weigh the alternatives with scale factors which do

not obey the laws of probability. Ellsberg's paradox has been verified exper-

imentally by MacCrimmon [19651, Slovic and Tversky [1974.1, and MacCrimmon and

Larsson [1979)-. Plausible explanations for this behavior have been offered

by Arrow and Hurwicz [19721 in terms of maxmin choices instead of maximum

expected utility.
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I
A.4 CONCLUSION

This appendix has provided a brief overview of some results available

concerning human decisionmaklng. The focus has been to study results which

indicate that the standard normative theories such as probability theory and

utility theory fall short of describing observed decisionmaking behavior. The

rest of the research irt this report has been motivated by the existence of

these differences.

AI
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ASYMPTOTIC AGRELEENT IN DISTRIBUTED ESTIMATION WITH INCONSISTENT BELIEFS

1. INTRODUCTION

Consider two agents, I and 2, who wish to estimate the same random vari-

able x. Initially agent I (i-1,2) observes the variable yi (U-1,2). Based on

his observation Agent 1(2) generates an estimate xI (x 2 ) which he sends to

Agent 2(1). It Is assumed that the message Is received without any distor-

tion. Each time an agent receives a message he recomputes a new estimate,

based on the original observation* and the messages received by the other

agent up until that time, which he then transmits to the other agent. Several

questions related to the evolution of these sequences of estimates arise:

Will an agent settle on a final estimate? Will the estimates of the two

agents eventually agree?

A substantial effort has been recently devoted to the problem of reaching

a consensus of opinion among several decisionmakers (1)-[15**. The crucial as-

sumption in [11-151 is the following: All agents are a'aumed to be Bayesian.

Agent i's view of the world is represented by an a priori distribution p1 on

the space of 'primitive- random variables x, yi, and pi is the same for all
agents. Under this assumption the conditions under which asymptotic agreement

is achieved are investigated in [11-15). A major result reported in 131 is

*We restrict attention to the case where each agent takes one measurement

without any loss of generality; the case where the agents take noise measure-
ments and communicate simultaneously can be analyzed in a similar fashion.

"**References are indicated by numbers in square brackets, the list appears at
the end of the main body of this report.
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the following: if th'. messages exchanged among the agents are the conditional

expectations of the random variable x then the agents agree asymptotically.

In this report v consider two Layeslan agents who have different views _--

of the world and exchange their conditional expectations of the random vari-

able x. Wle show that asymptotically the two agents either agree or they

realize that they have different models and stop communicating any further.

Agreement or disagreement depend on the order of communication.

The remainder of this report' is organized Ai follcws: The model is,

presented in Section 2; the process of expectation formation' Is described in _____

Section 3; the question of convergence of the estimates and of asymptotic V

agreement are investigated in Section 4. Conclusions are presented In Sec-

tion-5.
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2. THE MODEL

We consider two agents, I and 2, and a random variable x which each agent

wishes to estimate. We make the following assumptions:

(Al) Both agents are Bayesian. Agent i's (i-'l,Z3 view of the world is repre-

sented by an a priori distribution Pi ('i-1,2) on the space of the "primi-

tive" random variables X,Y 1 ,Y2 , whose sample space is 2. Agent I assumes

that the other agent's distribution is also pi, We do not assume pl-p2,.

(A2) EilxI<- i-1,2 where Ei denotes the expectation with respect to the proba-

bility measure pi induced by pi. i

(A3) Each agent takes only one measurement yi (i-1,2) at time t-o*, and com-

putes the conditional expectation xI of the random variable.x based on

his measurement. The spaces yi (i-1,2) are finite.

(AM) At time t-2K-l (2K), K-1,2,-", agent 1(2) sends the message xk

agent 2(1). Thus, messages are transmitted at t-l,2, in the following

"1 -2 '1 "2 -1 -2
order: 

9Xl 1l,X 2 ,X 2 ,x3,X 3 , *".*

The messages xk (i-1,2, k-1,2,---) of each agent are the expectations of x

based on the original observation Yi and the messages received in the past by

the other agent.

*The problem where the agents take more measurements and communicate simul-

taneously can be treated similarly by considering the whole sample path

yit A (yi(I),yi(2),.. ,yi(t)) at any time t.

3



Under assumptions (Al)-(A4) we study the following problems:

(1) Will the estimates of the two agents eventually cpnverge? *4)

(2) If they converge will they agree?

The- model proposed-in this report is similar to that of !31. The only •

difference between the' two models lies in (Al). In 131 all agents are .

Bayesian with the same view of the world; in the model proposed in this report

the agents are Bayeian but have different views of the world (different

pi's). Moreover each agent supposes that the other agent's a priori distribu-

tion is the same as his. Thus, the agents are unaware that they have dif-

ferent views of the world.* Because of (Al) the same message has differenr

meanings for its sender and receiver! each agent Interprets his data in terms

of his own model and generates the conditienal expectation according to his

prior distribution pi. The Interpretation of the data and the message

generation by each agent are considered in the next section.

S. 4

*The case where the agents are aware that they have different views of the ."

world reduces to the model of (31; the agents can first agree on an a priori
distribution P by negotiation (according to the method of [61] and then
proceed to solhe the estimation problem.

'4
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3. DATA INTERPRETATION - MESSAGE GENERATION
"-i

In making his estimate xk, agent I undertakes two logically distinct

operations. First, he interprets his current data (his original observation

and the received messages) in some consistent manner. This interpretation

converts raw data into structured information. Secondly, based on the

"i
interpreted data an agent generates an estimate xk of Y, which he transmits to

'1 2'1-2-1 ^2
the other agent. Thus, a sequence of messages x xI x 2 x2 x3 x3  is

generated as follows:

At t-1, l's estimate is

xI E(xIY p a.s. (3-1)

(where E denotes the expectation with resprct to the probability measure p

induced by the distribution Pi on 91). The message xl is transmitted to
*11

agent 2. Agent 2 interprets the mesoage x 'as the realization of the random

variable
-1 -E 2 (x1Y I p2

( Y=pa.s. (3-2)

:4 That is, according to agent 2 the realization y of Y¥is such thet

.1 .,,-1 E (jl 2"x .-x .qXy) xp a.s. (3-3)I x I _

4 At t=2, 2's estimate is

x2 E 2 (xy 2 xl ) p a.s. (3-4)

0S



and this estimate Is sent to I who Interprets it as the realization of the

random variable

2' £1 2x ^1 1
I (xjY, x 1 ) p a.s. (3-5)

In other .'ords, according to I the data 2 (the realization of y2) and xI is

such that

"A2 -2 E1  -21 I
"x " x( ,x 1 ) P a.s. (3-6)

2
In general, when agent 1 receives a message xk he Interprets it as

""2 " x a.s. (3-7)

"Xk Xk #'xIy2 xx.x ) p1'*

and then he generates

1 I (Uly,1-2 -2 -2 p1 a.S.
xk+1 _ I,,x 2  " ,xk p (3-8)

which he transmits to agent 2.

Agent 2 Interprets this message as

'- 1 -
2  '-1 ''2 '2 2 2i Xk+! '+I _ 2 3,. ", (3-9)

- -k~ ,xl x1 ~2 ,~x3, .) p a.s.

* and then transmits

22. ( 2 1 ,-1 2

"X k+l F k+1 p a._. (3-10)

to agent 1.

Equations 3-I through 3-10 describe the rules according to, whi'!h the
"-1 -2 -1 -2

seuneof messages xlx.1 2 12ar e2 s2, ... is generated. These rules are well-

defined because of assumption A2.

N



4. CONVERGENCE AGREEMENT

In this section we prove that under assumptions Al through A4 and the

rules by which messages are generated, one of two possible events occurs:

Either

1. The agents' estimate' converge and the agents agree asymptotically,

or

2. The agents realize that they have different models and stop coa-

municating any further.

To prove the result w- re-examine the "data interpretation' which is one

*r of the two distinct operations that each agent undertakes in making his

estimate.

At first we let r denote the realization of the random variable r.

When agent 2 receives message x he figures that Y has realized a value

Yl such that

2 2 ^2 2 2 - , -2 -2 . -2""~E (xI• 9'" • x ' " E "" x'_ly•• "'• vi < K 641

-2 2 -2
Similarly, when agent I receives message k he figures that Y has realized y

+ such that

E 2 -t " -- x, - -x 2 (x .• .. Vi 4 K (4-2)
E(x 1.!2

7
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For each observation value Y A (YI,Y 2 ) let Yi(Y) denote the set of all Y1

that satisfy Eq. 4-1) and let Y2(Y) be the set of all ; 2 that satisfy Eq. 4-2.

Obviously these sets cannot increase, i.e.,

yi (Y) C yi (Y) Vk 1-1,2 (4-3)
-k+l -k

Thus, as k increases one of two cases can occur: Either

Case 1
46

Yi (Y) V 1 vi, VL (4-4)

or

"J.
Case 2

At some step I

yi (Y) = j, cr2 . (4-3)

We shall analyze each case separately.

Case 1

When Eq. 4-4 is true we shall prove that the agents' estimates converge

and the agents agree asymptotically.

To prove this result we first define the following a-fields:

I 0l(1 11 -! 1 -2' -2 ;2) 46
G x i-t ;, x 2*...,.x: 9x10 x 2 .. 0 -) (4-6)

" A1 1 - 2 -
SF, a (Y X1 x ... ;2 (47)

' • e 8



x2 , xI, x 2 * ,

Z "2 . ;.o . X1 2 -2"( 48
F1 2' x , x, , xiJ (4-9)

2 Ao 1' 2. ;1 -1 -,1 • .. -o
FG 2 (Y it x-2I X2 , X1 , x1 , (4-9)

2A 2 -2 -1 -1

- a x1 , i*t", (4-1102* P 2'

2 A 2 2' -1- 1)(-2

x -a ;1.* x *,

S1a2 x1, 2 1) (4-13);IA 2 6 2. X 2 - l
a x1 2'.* 'xI I i1( -2

.I A ' 1 ^ 1 ' -2 -2

x,, x2  o., X x2 '4-14)

~2 .1 ~2 2 -1 -1 (-5

21 2 12

The interpretation of Gip Cj. Fj, Fj Is straightforward. The a-field Gj (Ci)

represents the view of agent 1(2) about the information available to

agent 2(1) due to the mea.ages generated and exchanged up until time 2i(2i-1).

1 ^2
The a-fields F 2 Fi have a similar interpretation. We can now prove the

following results:

Lemma 4-1

1x , c 1  1  2,;2 ' If , [ 2 , c2  p21, ;l a 21

are uniformly interable martingales.

9



Proof

By definition

J. Ejlx Fjl pi a.s. i. J-1,2 (-16)"

and

Because of Eqs. 3-11 and 3-12 and Theorem 1.8.1 of 171 It follows that

'Jx " J {xlG} pj a.s Vi, j-1,2 (4-18)
Th1 (4-18)

The proof that ;2. p;2 .' 1. G p' are uniformly Integrable martingales

Is similar., 0

Theofem 4.1
' -2 2 -1 1 2The estimates xi, xi. x1 . x i of agent 1(2) converge p (p) a..

Proof

Follows fr. lemma 4.1 and the martingale convergence Theorem VI1.4.1 of

[71.

Let us denote by

- Ix p1 a.s. (4-19)

x- E x p1 a.s. (4-20)

x2 E 2 1x'21 P2 a.s. (4-21)

E 2 a.s. (4-22)

10 I
.- - - - - - - - - - - - ---- (-- - . .



the limits of the estimates of the two agents. Then, we have the following

result.

Lemma 4.2

-lan p ý . (4-23)

Proof

Equation 4-23 follows from Eqs. 4-19 through, 4-22 and 4-14 and 4-15. 0

So'far we have shown that each agent's estimates converge and moreover

each agent's estimate coincides asymptotically with his interpretation of the

other agent's estimate within the terms of his own view ot the world. The A

next theorem shows that asymptotically the two agents agree.

Theorem 4.2 MLi

Under Assumptions Al through A4 and 4-4, the estimates of the two, agents

agree asymptotically.'

Proof

'When Eq. 4-4 Is true, Eqs. 4-1 and 4-2 hold for all k, consequently

"I. •-I.

and (4-24)

"2 -2
"x X

Agreement then follows from Eq. 4-24 and Lemma 4.2 0

The Investigation of Case I Is now complete.

11m



Case 2

The following result Is true in this case.

TheorenA4.3

If Eq. 4-5 Is true the agents realize that they have different models and

stop communicating any further.

Proof

If Eq. 4-5 occurs for agent I at some time L, then agent I must asseme

that the sequence Yi (y)I Is -impossible- (i.e., sn event of zero
-j - i-1

probability), or more reasonably agent i must assume that the two models pl

and p2 are different. Thus, further communication is not necessary (unless

the agent is willing to modify his model and reinterpret the sequence of

received messages).

Remark

If after yi (y) M * agent I is willing to modify his model (his prior

probability), then it can be shown, using the results of [61 and 131, that

eventually assumptotic agreement can'be achieved. The situation 'where agents

are willing to modify their beliefs, after they receive an "Impoesible" •I L

sequence of messages according to their initial view of the world, is similar

to that considered by Kreps and Wilson 181 who study dynamic games of perfect

recall and determine -sequential equilibria" for these games. In Kreps and

Wilson 181 the agents modify their beliefs (expressed by a behavioral strategy

and a probability measure on the elements of every information set) whenever

an Information set of measure zero is reached In the game.

The Investigation of Case 2 is now complete.

12
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The results obtained so far shou that the communicating agernts either

agree or realize that they have different models and terminate their communi-

cation. The example that follows shows that agreement may depend on the order'

of communication.

Example 4.1

Let 0 - 10,21 x 10,31 (Fig. 4-1). Assume that pl Is the Lebesgue

measure (normalized to give P(0-)-), and P2 is such that

p2 (C1 ) - 2/12, p 2 (C2 ) - 3/12, p 2 (C 3 ) - 7/12

The distribution on each of C1 , C2 , C3 is uniform. Agents I and 2 try to

estimate I(A) where A is shown in Figure 4-1. At t-0, agent I observes

{l(B(), l(B2)1 and agent 2 observes (I(CI), 1(C2), 1(C3)}. Let wcB1 ri C3 -

3 .',--t• __ _ i sl stI•.'

A -- i ,IIB2... I'.: j j C

0 2

Figure 4-1. Parameters of Example 4.1'

Consider first the situation where agent I sends his estimate xit to

.2
agent 2 at times t-1,3,5,---, and agent 2 sends his estimate x to agent 1 at

times t-2,4,6,--.

Then X -ý,) E'l1(A)11(B )1 1/2.. Agent 2 receives 1/2 and interprets

it as follows. He bellees agent I observed 1(B 2 ) because only then

E2 12()11(B)1" 1/2 1 (")

13



Agent 2 initially observes l(C 3 ). Consequently after he receives x (w) his

new estimate is

^2(w) - 2 1,(A)II(B 2  c3)j " 3/4

This estimate is transmitted to agent I waho interprets it as follows: He

concludes that agent 2 observed 1(C 2 ) because only then EII(A)II(BI r' C2)I -

3/4. Then, agent l's estimate is

x1 -^t'(w)ltB n c)I - 3/4

and this estimate is transmitted to agent 2. From that point on further

communication does not c:Onvey any more information, so the agents' estimates

agree and

l 2x "x 3/4 .

Consider now the situation where agent 2 sends his estimate x to agent-.

t

t-2,4,6,--- . Again, initially agent 1 observes I(B1) and agent 2 observes

1(CC) Hence
3.

(2wc) - •2•^Ic31- 1/2 ::5
^2w E2(1(A)II(C 1/2

13

Agent 2 receives xl(I) and, interpr'ets it as follows: He believes that agent 2

observed either l(C2) or I(CC) because only then
2 3

EI(I(A)jI(B 1  C2 )) E E' (I(A) I(B, n" C3 )j = 1/2
1 ..2 3

''I..,114,N•



Then agent l forms he new estimate

1 1 1 2 1 3~ 21f") - E {1(A)l1(B1 (n c 2 )) + E i1(^)l1(B1 Cl C3 )} -

which he communicates to agent 2.

Agent 2 can not interpret consistently this message ;ur the following reason:

He knows that agent I observed either 1(B1 ) or 1(B 2 ). He also knows that

agent I knows that agent 2 observed either I(C ) or I(C Hence If agent I
2 C3 .

observed l(B1) he should transmit to agent 2 the-message x W_ - 0.4; on the 4.,

other hand if agent I observed I(B2 ) he should transmit to agent 2 the message '-

x1(w) - 0.6. The message (W) - 0.5 has a zero probability according to

agent 2's view of the world, consequently, agent 2 realizes that he does not

have the same model as agent I and any further communication is not necessary.oC

Example 4.1 shows that it is not possible to partition the space Y of

observations Y A (Y1 ,Y 2 ) into sets Yc YO such that .'/"

yc U yD = y'

¥c n yD •:-

and so that if Y C YC agreement is always achieved whereas if Y e yD the

agents realize eventually that they have different models. j..

Finally, we restrict attention to the Gaussian case. By this we mean

that Mi) the measurements are jointly Gaussian, (ii) Assumptions Al through A4

hold. Then we have the following result:

Lemma 4.3
p,. . "%

For the Gaussian case agreement is always achieved wher, the order of com-

munication is fixed. However, when the two agents communicate simultaneously,

then agreement occurs with zero probability.

15
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Proof

WJhen the order of cormunication is fixed agreement follcws from Lemma 3

of 131 and the fact that with only one measurement and two agents having the

same view of the world it takes only one communication to reconstruct the

centralized estimate.

When the agents communicate simultanetusly then, in view of the results

of 131, after one communication each agent believes that he has reconstructed

the centralized estimate (according to his own model), thus the two agents do

not communicate any further and agreement occurs with zero probability.

V..

16-**.

*. "
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5. CONCLUSIONS

This report extended the results of [31 to the case where agents with

different beliefs (different prior probabilities) exchange information.

The process of expectation formation for such systems was described, and

It was shown that agreement depends upon the order of communication between

the agents.

4 17
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ABSTRACT

- A team must agree on a c€mmon decision to minimize the erpected cost.
Different team members have different observatons relating to the 'state or the
world', and they may also have different prior beliefs. To reach a consen.su
they exchange tentative decisions based on their current, information. Two ques,-
tions are discussed: When do the individual estimates converge! If they con-
verge, will a consensu. be reached!
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1. INTRODUCTION

A team or committee of N people, indexed , 1, ... N. must agree on a com.

% moo decision v to be selected fruw a pre-specified set U so as to minimize the cost

Aw.,,,,) (I)
N

where J s a real valued function of the 'state of the world' &j E 0, and the decision i.

Initially, different people have different information relating to w. This is modeled by

"stipulating that peron i observes the value of the random variable Y; - Y, (w). Every-

one knows that i knows Y*, although j, " 74 i, does not know what the value of Y,

actually is. Everyone knows the function J.

Each persou has a prior belief concerning w. We stipulate that i's prior belief is

"summarized by the probability distribution P' on (nF) whenre F is bhe a-field of events.

!f P1  .... P0, we say that the beliers are consiatent; othejA-Lse tbey are incon-

, siatent.

Since inh.t:ly different people have different in.formation, and also becaum their

belief. may be iuccnsiltent, their estimn'tes of the best decision will also Lc different. To

arrive at a consensus decision it is necessar$ for them to sn.;- Wnformation. We supose

that this information is shared br means of the following procedure.

Consider person i. In the first round Ie makos an estimate ui(1) which is based on

his initial data Y;, and he communicates this estimate to some nr all of the other

members. By the tiznc i'makes his setoG= estimate, he wil! bave received the estimates

* of some of the ot'Lee.. More generally, denote hy Dj(t-l) the -itarges rceived by i

from t.i- tethers before i makes his Ili eZsL=Ate Ui(t). That estimate will be based on

Yi and Di(t-l). We assume that i communicates all his cztimatea t. a fixed set of the

other people, and that there is a message transmission delay of one time unit.

LB
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Our aim is to discuss two questions: Will each person's estimate converge as

o - ! oo If the individual estiMates couverge, will they re-icb a common limit! To for-

mulaw these questions mathCem'atically, we need to specify bow'each person estimates

"the best decision based on the data available to him. This is done in Section 2. Once

this is done. it turns out that the answers depend crucially upon whether the prior

beliefs are consistent or inconsistent. The consistent case is considcred in Section 3, and

the inconsistent cas in Section 4. Section 5 outlines some directions for further'

research.

2. ESTIMATION, SCHEMES

Sev•erl different estimation schemes have been considered in the literatu,

"Borkar and Varaiya 121 consider the situation where the committee wants to esti-

mate a random variable X, and they suppose that the 0'A estimate made by i, u8(t), is

th.- conditional mean of X given the available data, i.e.,

*(i) - E; (X I Y,, D,(1-1)}. (2)

Here E' denct'- expectation w'ith rc-peet to P'. We will see later that the right hand

sidc of (2) has to be interpreted carefully when the beliefs are inc',nsistent. For the

z•n-•ent observe that the gi,•ste gven by (2) is also the decision that minimizes the

(expected - of '

when thc information avail-able is (Y., D.(t-l)). Aumann '111, and Geanakoplos and

Polemarchakis [41 consider the situation in which the group wants to estimate the proba-

"biaiqy that a. particular event F E F has occurred. This is a special, case of (2) with

I X - I(F). The set n of all pc*Alhe states is finite is [II and 141. Tsitsiklis and Athans
j7j; cnsider the situation described in the introduction. Sebenius and Geanakoplos [51
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S.,(,} - E{X I ,(,-1)).(4

SLet. ",(oo) :-( 0 ') (t). Since Y,(t) is an inc1.!ising sequence, it follows from the mar-

tingale convergence theorem that

vi( , (oo) a...; uj,(oo) : E(X I Y,(oo)) (5)

Thus the individual estimates do converge.

Next we investigate whether the limiting estimates agree. Suppose i communicates

his estimates to j. Then v,(t) is jY(t+l)-mcasurable. From (5) it follows that. u(oo) is

jY.(oo-measurable, and so,

V.i(oo) - Ecu (c11o) i x(oo) n l (oo)1. ()r

Suppose there is a communtcefon ring ;i,- ,.* il. This is a not necessarily

"distinct sequence of persons such that ij communicates his estimates to .,.l- Then,

according to (6), we must have

v.;(oo) -- ' {.,(oo) I x4 (oo1) n n.,(oo)) , k - n, (7)

where i.,, :- il. It, is quite easy to show (2. Lemma 21 that (7) implies

"so that the asymptotic estimates of Othe members of a communication ring agree. This

suggests Lhe main result of [21:

Theorem 1.

If the estimates of r are given by (2), then each person's estimate converges. More-

ra over, if everyone in the team is a member of the same communication ring then the lim-

"iting estimates agree.

g Proof:

pR
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Teneketzis (8! show also that the agreement condition for rings is satisfied by decision

rules which are optimal in the sense defined below:

Proposition 1.

Suppose that d is a decisioL rule such that v(d(f_ C F' for all a-ficlds r C F.

Then d satisfies the agreement condition for rings if and only if there is a partial order.

ing : of the set of funct;ons (d(f )r F C F) such that d(F' )is the maximum ele-

ment of (d(G) : 0C F, o(d(G)) C F, ) with respect to <.

"Proof:

See Appendix C.

In many cases as in (21, M7] the partial order relation is defined in terms of a scalar
IF.

cost function. The following proposition proves that decision rules defined by such cost

functions satisfy the agreessent condition for rings, provided that the decision includes a

tie-breaking rule of the cost function has more than one minima.

Proposition 2.

"Suppose that the decision functions take values in a set U. Let L be a real-valued func-

tional of F-measurable decision functions 6 : (l -- U. For each PF let D(F' ) be the set

of F' -measurable decision functions 6 such that L(6) < L(6' ) for all measurable

6' : n - U. Assume that U is partially ordered by <' and that foreach F' , there is

a 6 E D(F ) such tha. 6' E D(F' ) implies 6' (w)_<' 6(w) for all W E fl. The decision

"- rule d(r } which asigns this J E D(_- ) to ,P satisfies the agreement condition for

* rings.

P roof:
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3.3. COMMON KNOWLEDGE

The main feature of the estimation schemes presented in Ill, 121,141, (81 is the fol.

lo~l,'g:

If all team membvr3 1Jc the same decision rule. if everyone in the team is a member

e, of the. same communication ring and if common knowledge decisions agree, then all team

members agree on the same decision. The common decision is the decision based on the

ultimate common knowledge (common information) of the team members.

Thus, it appears appropriate to define common knowledge at this point, and to

% show that the definitions of common information given in [11, 121, 181, 191 are essentially

equivalent and lead to the same results.

Aumann (I represents information by a partition P on the sample space 0.

Borkar-Varaiya '(21 and Washburn-Teneketzis (8) represent information by or-fielis con-

tained in F. It can be shown that these two representations are essentially equivalent.F.,
The partition P is a collection (El, E2, - • - ) of mutually disjoint events whose union is

the whole sample space. To a partition P there eorrespones a unique a-field F. namely

the u-field generated by the events in P. Each Et E P is an atom' of F. If

P, ( (E,, E2 ,'-- } and P 2 - (r,,, G 2 ,'') then one can define a third partition

3P which is the finest partition contained in P, and P2 and is denoted hy P, AP.. if
I-.-

P, and P. correspond to the u-fields FI and F. then PI AP 2 corresponds to F I AF'.

Aumann (II defines an event E to be common knowledge to team members I and 2

(with information P, and P. respectively) at w if there is an atom G E P, A P. such

that w E G C E. If F, and F 2 are the ,-fields corresponding to P, and P, respective-

ly, then the definitions of common knowledge at w given ii (21, 181, namely that there is

G E F, AF 2 and w E C C E, are equi-ralent to Aumann's definition. Let us say that

I.o-

6'
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the event E is common knowledge to the team members I and 2 if it is common

knowledge at each w E E. Then E is common knowledge to I and 2 it and only if it be-

longs to the u-field generated by P3 AP 2 , namely F , AF2.

Milgrom [91 characterizes common knowledge by

(i) associating with each event E another event Kc with the interpretation

Ks - ,E n : E i6 common knowledge at w)

and

"(ii) considering the following four conditions:

I',(C.) KE C E

(C2) V E ' _E , V iriE F,,F, CKE

(C3) E C EC .==> KE, C K.,

S(C4)( V, ;, V w E E, if w E F', Fi E -, E- KE.

K: Condition (Cl) asserts that an event E is common knowledge only if it actually occurs.

Condition (C2) implies that if E is common knowledge then every team member knows

"*" that E is common knowledge. Conditions (CI) and (C2) imply that E is common

'knowledge only if E occurs, each team member knows E, each knows that all know E

and so on. Condition (03) implies that wherever El is common knowledge any logical

consequence or £, is also common knowledge. Condition (C4) asserts that public events

-are common knowledge whenever they occur. A public event is defined by the an-

tecedent in (C4); it is at event which if it occurs will be known to every team member.

Milgrom (191) shows that his characterization of common knowledge is equivalent, to

Aumann's definition.
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mation in a way that can be stated succinctly using common knowledge: a contingent al.

location I is efficient if there is -ao other allocation v such that it is common knowledge

that all agents prefer f to v. Milgrom (191-11O0) used the idea of common knowledge to

analyze a rational expectation3 trading model, lie showed that when traders exchange a

risky security on the basis of private information then they "agree to disagree." (i.e., no

trade takes place). Kreps, Milgrom, Roberts and Wilson 1121 consider finite repetitions

of the we!l-known prisoners' dilemma game. A common observation in experiments in-

volving finite repetitions of the prisoners' dilemma is that players do not always play the

single perioi dominant strategies but instead achieve some measure of cooperation.

Kreps and 6•3 co-authors in 1121 show that the lack of common knowledge about one or

both players' options, motivation or behavior can explain the observed cooperation.

4. INCONSISTENT BELIEFS:

The analysis is quite different when the beliefs are inconsistent. The discussion in

this section is initially 1ssed on Teneketzis and Varaiya 181. Then the results of 181 are

extended to the case of a general decision rule d. To ktep the notation simple assume

there are only two persons, Alpha and Beta. Initially, Alphk observes the random var;-

able A and Ltsef observes B. Both wish to estimate the random variable X. We also as-

sume that f is finrte. The prior probabilities of Alpha and Beta are denoted P*, PO

respectively.

For t- 1,2 ,- -- the 1't estimate by Alpha (Beta) is denoted a, (Og)- a* is the

conditional expectation of X given the observations A,#,,... , After a, has been

calculated it is communicated to Beta whose tt estimate is the conditional expectation -

of X given B, a,, . . ,o. . Once $l is evaluated it is communicated to Alpha who incor-

porates it into the estimate a,.,, and the procedure is repeated.

, 4 o
I>°'



To complete the specification we aLssumC tat the estimation procedures followed L

by Alpha and Beta are consistent with their own prior models. Tha-.. is, each assumes

the other's model to be the same as his own. Consider Alpha. When he receives Beta'as

estimate 8, 1. Alpha interprets it as if it were bzscd on P* rather than on PO. Thus Al-

phA assumes that Beta's estimate is a realization of the random variable

:- E{(Xj B, ,, ,o..

Subsequently, Alpha calculates *I,

Symmetrically, Beta interprets a, as

, -EO {Xl A, . .,,,}

and calculates $j by

, :-E�'P {X ( B,,,...,i,,

There• is a more revealing description of the functional dependence of these esti-

mates. Suppose a particular realization Z m (A, B) has 'occurred. Since Alpha observes

A, he concludes that C E fl0 := ((A, B) I A-A) and so his lirst estimate equals

9, - Eo(X I A-A) -- E(X I•E I,*).
Alpha transmits the number ýj to Beta. Beta interprets it as a realization of the random

variable

tmEP(X A),

and so he infers that Z E f0, :(w I ajw() 3a, B -B, and his first estimate takes

the value

E -u(X E s c u a t p)

This value is communicated to Alpha.

IN
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At the beginning of the 06 round, Alpha starts with the inference ; E Os*A when

he receives the estimate 4l. He interprets it as a realization or the random variable

.-, -. E*(X j B. o,,...

and so Alpha concludes that Z E ," :0 (wo c En,*,. #,,(w) = He. ence Alpha '

tCA estimate takes the value

S, - (oX IoE nv...

which is c..,mmunicated to Bets. Whereupon Betg interprets it as a realization of

concludes that z E nio (w- w Eno,, :,(w) - it and evaluates his ta estimate as .

P, -E(x IoErl•).

Thus, as expected, the uncertainty diminishes with each exchange, ftlg, C n,'"

fln," C fl,. From the description above we also see that if for some k either

n -,+ nj or nt,. - fi?, then fig" - fl, andnj n1,., forit> k+l. Hence for U

t > T (which cannot exceed the number of distinct elements in fn), fln and flfbecome

constant. These limit sets depend upon the realization Ca. Call them t.h(w) and fl(•w.

respectively.

There are two possibilities. The first is that fl.n(m) * and 171(w) -, . This

happens because at some stage the message ý-t received by Alpha is "impossible:" there

is no Z such that P,.(•) . or, the message 3, received by Beta is "impossible:"

there is no Z such that oa(;)) 3 ',. Alpha and Beta must realize that their prior

models are inconsistent. Let fit be the set of all realizations that lead to this outcome.

The second possibility is that fQ.(w) $ • and fl/(w) 74 0. In this case for t > T

the estimates stop changing: - ,t(w)--q.(w), o,(w) a.(w), a,(w) .(.J), a'."

1(w)- fl.(w). Since for every t, P(Cr) ,(w) and (,,) " ,(w), it follows that

-;* -
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On the other hand, since Pj and oa are based on the same model, namely P., it follows VA

from Theorem I that A.(w) - o.(w). For the same reason o.(.,).ff.(w). Thus if

w E fl, := fl - 6I1 , there is agreement a,(w) - P,(w) for I > T., It ie worth emphai:.,

ing that this agrecment need not be a rcflcction of the consis tency of the two models P*,

P-. Rather agreement occur. bccauae within' ech pereon'. model there i' sufficient "un- .- '

, ..7-•'.•'
certainty" to permit the reconciliation of the other's message# with hi. own observation.

One might sea that agreement could result from two wrong arguments. We sumwarize

the preceding analysis as follows:

Theorem 3

The set of events n2 decomposes into two disjoint subsets (It and fln1 . After T ex-

changes, if w. E (11 both agents realize their models are inconsistent, whereas if W E fIl"

the two estimates coincide.

The result is fragile. In particular, whether a realizatin W ends in agreement or in

impasse can depend upon the order of communication between Alphaand ,leta as .

demonstrated by the following example:

Example SgA

Take fl [0,21 X [0,31, suppose Alpha observes

A I (a( 1), 1 --

and Bea observes r

BI ({(bI), I1(,), 10(b3)) -

and suppose X is the indicator funcion of the shaded region as shown in figure 1. As--,-

sume that w is uniformly distributed under P', whereas under PP-

.+i
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PP(b,1) 2/12, P1 (b,) 3/12, P'(b3) -7/12

and within each bi, w is uniformly distributed. Suppose Z E a, n b3 and that Alpha,

communicatcs first. Then

a_ =E(XIwEa)j 1/2

Bets interprets this as a realization of

-- E(XII(a,, 1(-))

Since EAXE( a1) = 5/12, E(zlwEa2 ) 1/2, upon learning that •i 1/2, Beta con-

cludes that . E a2, and since he has observed that P E b3 his estimate is

E- (Xw E d .2 n b3) - 3/4

/ Alpha interprets P, as a realization of E"(ziwEa, B). Since
/

E' (zwo ain s 1) - 1/2,

E (zlI'Ea in b2) , 3/4 ,

E'(z JwEadfi b3) - 1/2,

Alpha concludes that Z E anb2, hence

=2 E" (XlEainb2) 3/4.

Evidently, 2 3 ..... 4 3 3/4 and there is agreement. (Note

that Alpha believes that W E a nlb., Beta believes that ZEa 2nbs, in fa:t zEa ifnb3.

Now suppose again that oEafl&3., but this time Beta carommnicates first. Then

- EO(XIjEb-) 112

Sincec

E (XlwE b1) 1 1/4,

E (X-Eb 2)- E 4 (XjPE bs) = 1/2,

upon learning =, 1/2, Alpha concludes that 'dEb 2 Ub3, thet his estimate is

,- E (XIwE,• n(b tbs)) A- 1/2

But Beta expect3s ' to take on the value
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EO(XjEG~nb2.U')' 0.

or

EFLXIwEa,fl(b 2Ubs)) =0.0

Thus Beta concludes that the miodels are inconsistent.

Tbr results or Teneket6is and Varaiya 181 can be extended to the case where the de-

cision rule is a general function d as in section'3.2. We discu3ss this case next.

Assume the same model as in Teneketzis and Varaiya 16J and suppose the estimates

at and if, are generated by the decision rule d given the observations

A, fl, 02, &.. and B, 4 1, 6 V... Pa- resPectively. Suppose the deci-sion rule d sa-

tisfies the agreement condid~on: ME=~

for -all G 1, C: C F

ff(d(GC2)) C GC., C _r'u= d(G 1) d(G,) .(

Under the assumptions above one can pruve the follow'ing result:L

Theorem 4.

If 01 is finite and the decision rule d satisfies the agreement cov~ition (15); then ci-

ther the estimates c. and fl agree after a finite number of comm,!nic.-.,"wn3 or Atpha a'ýd

Bcta realize that their models are inconsistent.

Proof:

See Appendix F.

As pointed out in the discussion previously the investigation ot' convergence and.

agreement of the estimates can proceed in two stepri:

1. Determine what each team member's m~odel predicts aibout the evolution and

the outcome of the estimation process. ,f



2. Examine how these predictions compare with what actually happens during the

estimation process.

For'finite fl, the result of theorem 4 is true for rules that obey the agreement coa-

dition for a very simple reason. If a team member's view of the world is COnsistent with

reality, then agreement must result after a finite number of communications because tbis

is what- is predicted by the team member's model; anything else would be inconsistent.

6. CONCLUDING REMARKS

Recall the discussion in Section 3.1 and 3.2. There a consensus 6s reached via a se-

quence of exchanage of tentative decisions. The information available to a person ian-

creases with each message exchange and the limiting consensus .decision is based on the

information common to all in the sense that 1,(oo) ..... dN(oo) is measurable with

respect to Y (oo)n ... flYN(oo). A consensus can also be reached if all people share

their initial private data _Y1, ... I_,. We may call this consensus the Iul infrm,•tan

decision. It turns out that the consensus reacled by exchanging tentative decisions need

not coincide with the full information decision. However, within a rather' simple model,

Geanakoplos and Polemarchakis 141 have shown that the two decisions are "almost a&-

ways" the same. It would be worth investigating this in a more general setting.

Secondly', even when the two ?ce%:iions are the same, it does not follow that All peo.

pie obtaia ' the full iaforrsation, i.e., it need not be the Case that

VYa(oo) o vj Y 1, ... , YN). If Y,(oo) is a proper subset of &'( Y', . • , Yp4), then one

could argue that reaching contse- us vim exchange of tentative decision., req•ir"s a

transfer of less information than the exchange of all privae information. This too is

worth further investigation.
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Recall now the discussion dealing with the case of inconsistent beliefs The mont

interesting finding is that Alpha and Beta can exchange statements about X and eventu.

ally agree even when their views are different. Thus paradoxically, the realization that

these views are differecnt is only.reached when further communication becomes impo'si.

ble. This raises several basic and knotty issues that need further investigation.

One can readily imagine situations where the most important thing is to determine

whether or not the beliefs are inconsitent. In the communication setup od Section 4 the

realization that beli-fs are inconsistent is fortuitous-it happens only if Alpha and Beta

reach an impasse. How should one structure the set of knessage exchanges so as to ex-

pedite the reaching of an impasse?

Suppose now that Alpha and Beta do reach an impasse (wE(f,). Our analysis stops

at this point, but there arm two dirrctions that can be purnued. First,'obXrve that with

the realization that .'heir beliefs are difTerent comes the understanding that they have

"misread" each other's messages (i.e., they now know that 5, a B and 4, •a a,), and

consequent.ly their estimates have been "blasd." To eliminate this bias each needs to

learn what the other's view is. A straightrorwaird way of permitting such learning is to

suppose that from the beginning Alpha admits that Beta's model Pt might be any one

of a known set P1 of models and there is a prior distribution on PO rflenting Alpha'#

initial judgment about BEca's model; a symmetrical structure is formulated f~r Beta.

AWit.hin such a framework it seems reasonable to conjecture that each agent will correctly

read the other's message and his sequence of estimates will converge. But if their models

are diffterent thben the limiting estimate3 may differ, and a conien,'u, wIll not emrrr,.

Suppese, howeer, that .4phs and Beta want to reach a "oninui, To rrich a con-

",ensri on, or both mu-t chance their modil,. One can irnmigne man, dif•errnt w avs in

N
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which this can be done. For example, De Groot (31 proposes that each person tells the

others what his prior probability is, and he propoelcs an ad hoc behavioral rule whereby

each person adjusts his model to a weighted average of the others' models. This is not

very satisfactory in situations where commun:-.ating one's prior beliefs is not practicable.
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APPENDIX A

Proof or Theorem I

Convergence of each wember's estimates follows from the Martingale Convergence

Theorem. The proof or therest of the Theorem proceeds to several steps. Consider two

agerits i and j and let G.(I) denote the a-field generated by the transmission and recep-

Sltion of mcsages rrom agent i up to time f. That is,

(1) ,( ,-IM , V.. ). , - , t-l)}

:• . ,.,(t-l ,.,,l), .... u,(2), . .. ,u•i-l)}

* Define S" to be the event that agent i *ends messages to i infinitely often. Then

Lemma AI

Both w,(oo) l(S") and v,(oo) I(S) are common knowledge for G,(oo) and

C, (oc). Moreover,

iu, (o. ) ("- ) E(XIG. (c.)n G, (c-) l(Sz:) ,,. (A.

and

W-(Co) I(S),- ,(a&) I(S) (A.2)

S* where

S S= 5 ' i' (A3)

Proof

Since tterc as a mrmagae transmisslon detay of one unit, it follcws that 51 is in

G.(oo) and G,(o). Since ,,(t) is G,(wý+l-me',urabie it rolow-, u,,(cO) is G,(ci-

ameasurable. Similarly, u, (oo) is G,(coY mex.iurable.
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Consequently,

., (oo1 ls')S )- ) X c, (oo) n G, (oo)) iS, )
S~Simnilarly,

,,, (oo) i(S' ) -- c.\I, (oo) n C, (oc)) i(S").

Ilence,

,. ,(oo) I(s) - u,(00) I(S)

To proceed further we need the following result:

"Lemma A2.

Let :2 :2,.--,:,9+1 -1 be random vectors and FtF...,F, be u-fields such

I i , - • -• , ; ~ r , • : - 1 , 2 , . , . ( A .4 )

Then

*I Proof

We can assume that :, am scalars, since by applying the some argument to each

component we can generalite the result to random vectors. Suppose first that each a is

square integrable. Since conditional expectation is the best mean squa.-c e-,timate and

:.= {:..*IF, ). it follows that

"" -.. I EIj, I2 + E:., - ,I a- 1 2,...,

Addling the, aIove rrlations and using :..I :I we get

00 I Thu:.i, A:i-... 0-~ :

(:aon.qterntly t, -.- a• -'" ... :- Thui, lemma A. h old tar square ,nte•,rable
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random variable. To complete the proof of Lemma A2, for any number K let

.i ain (:,, K'}. Then. by Jensen's inequality,., =E:,.,jf, i implies

:, >E:,.K IF, V (.)

The last inequality implies : 6K ? E( +1  V i (A.0)

-•> E •>.-> E- > EI =E.

Consequently. (A.6) holds with equality.

Therefore, for k , > k.

"a E(: -' "2

Since 2, - :, is bouoded, it is square integrable, therefore

:1 z Z 22 z
2  z

Lemma 2 follaws by letting k,-oo and k--oo.

Lemm• Al and A2 can now be used to prove the following result

Lemma A3.

Suppose, that

(a) , ... i,., - . form a communication nng for S, and

(is) I(S) is common knowledge for Gj(oo). G4oo), G'(o0).

Then u, (c) agree on S. i.e.,

S(-C) 1s- ( .UOC) I(S) . . - 0 1, ,)l(S1 a.,. (A.7)

Proof

fly le.mma AI

I/
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u,. (co) s'(S4 ') - E(XIG,(oo)n G.. 1,(oo))-

, E(u,,,.o)jG), (oo)n fG.,(oo)) l(S (st) = (A,.S)

= E(u,, 1(oo) I(S 4"')IG, (oo)n G, ., (oo))

By hypothesis (ii) SC G,(oo) and SCS'÷). Multiplication of both sides of (A.8) by

1(S) gives

"JI. u,(oo) I(S) - Eu..,(oo)I(S}) CG,(oo) na.,(oon} (A.9)

Eq.(A.9) and Lemma A2 imply

U,(oo) I(S) - W.00) (S) ..-. V(oo) I(S)

Lemma A'3 can now be used to prove the following result.

Lemma A4

Under the hypothesis of Lemma A3

u,(oo) I(S) = E(XIC,(o) n G2 oo) - -- nf c(00)) I(S) (A.0)

Proof:

By (A.9)

u,(oo) I(S) {E(X I(S)lG, (oo) n G,÷,(00)) (A.I 1)

S By Lemma A3

"" ,(oo) 1(S) = ý,(oo) 1(S),
"" thus, u,( 1(S) is common knowledge for G,(co), CG. ), G 1(oc). Taking condi-

tional expectation with respect to G,(co) nG Gco) . f. G.(oo) we obtain

u,(oo) I(S) = E(X IS)lG, (oo) n G.(cc)n .. • G4oo))

E (XjG.\ (cc) n G.:(). .. nG,(oo)) I(S)

since by bypothesis I(S) is common knowledge for GJ(00). C(c). .W... G,(0). U

The assertion of Theorem I now- tollows from Lemma A4 since I(A) i!, common

knowledge for all persons. The estimate of eacb agent converges to

E(.\lGjoc,) nC G ce.) .. -n Gc(0)).

r
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APPENDIX B

Proof of Theorem 2

The information of team member i is described by the u-field Y,. The u-fields --

evolve dynamically as follows:

Y,(t+1) jY(O) V V c(d(Y. (t))) (; 1, 2,..,q) (B.)

with initial condition

1Y:(0) - y(0) ( 1 ., 2, ..... ,,) (B.2)

where fil is the set of team members with whom i communicates either directly or in-

directly. By assumption all the team members belong to the same communication ring;

thus, (B.1) can be written as

Y,(t+1) Y,() V V u(d(L(1))) , 1,2, ... BS -_ '_" (B.3)

Since Y,(.) I Y,(oo), it follows by the continuity of the decision rule d that

lira U,(t) - U ,(00} (B.4)

Then equations (8.1) and (B.2) imply, that for each k, j we have

V(d(Y&(I)) C L,

and

V(d(Yi(0o)) C

Then the agreement :ondition for rings implies that

U,1(eo) - U(eo)- ,,(00) U.... ,,(oo) - d(_F, (oo))

Not.e that V is the join operation on ty-.flds: F, V F. is the smillest -.r!id conan,ng F,
and F,.

• I._. •. .
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"APPENDIX C

Proof of Proposition I

"-, At first we show that if

d(F )max d(G): G C F, v(d(G))F C P (C.1)

then d satisfies the agreement condition for rings. Suppose that v(d(_P )) C G C FP

Because G C P , d(G) < d(F 1. Since l(d(F 11 C G, it is clear that

d(F ) E (d(H) H C F, v(d(If)) C G). Thus, d(f_, d(g). The relation < is a

partial order, consequently d(G) < d(fl ) and d(f' ) _ d(G) imply d(P = d(2).

Hence d satisfies the agreement condition for pairs and in particular

d(a(d1f P )) d(ff ). Suppose F, Fq+j and v(d(F.-)) C F for I < K <

"Then

t (F.}- dlc, lalF_11< d(F-,

for each K, hence d(Ft) < d..) < d(F5 ,= d(F1), and so d(F1) d(F_- for all K.

This shows that the decision rule d defined by Eq.(C.I) satisfies the agreement condition

SFfor rings.

Conversely, suppose that d satisfies the agreeme-t condition for rings. Define the

"partial order < on (d(F' ) F' C F) as follows: Write d(F) _< d(F.) if and only if

there is an integer r > I and a-fields qK C F, 1 < K < q, such that v•d(Fj)) C Gt,

o,(d(GK )) C GK., and dG.,) -= d(F,). It is easy to see that d(F' ) • d(F ) for all

F- C F, (hence < is reflexive), and that d(F,) < d(F.4) and d(F.,) < d(P 3 ) imply

"" d(F,) 5 d(F 3 ) (hence < is transitive). Suppose d(F,) _< d(F,) and d(F-) < d(F,)

Then there are u-fields GK C F, 1 < K < v + m, such that c(d(G,. )) C G,.

.(d(_K)) C IK.,, 1 < K < tj + m I, d(F,) - d(G, ), and' d(F..) d(G,). The

S:. agreement condition implies that d(•31 = d(G,) for all K, therefore d(F,)= d(Fý).



28

v Consequently < is antisymmetric and so <- is a partial order. Finally, if C C F and

v(d(G)) C F" , then d(G) < d(fr ) by definition of <. Hence, d(P )is the maximum

clement of (d(G) G C F, o(d(G)) C F " witb respect to <.

t.9

.o

oa

pi
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APPENDIX D
U

Proof of Proposition 2

Suppose 61, 6, : f - U afe F-measurable. Define 61 <' 6, to mean either that

L(6 2) < L(6 1) or that L(6b.) - L(6 1) and 61(w) 5' 6(4w) for all w. It is easy to see that

<0 I so defined partially orders all P' -measurable decision functions. Suppose that

FP C F and 6 is an P -measurable decision function. Since d(f_ ) E O(F ), by as-

sumption L(6) _ L(d(_ )). if L(6) - L(d(F' )), then 6 E D(PF ) also, and

6(w) _5' d(F I Xw) for aIl w. It follows that'd(f' ) maximires (6: v'(6) E F) with respect

to < ' In particular, d(F' ) maximizes (d(G): o(d(G)) C F' , G C F}. Thus, Pro- p

position I implies that d satisfies the agreement condition for rings.

U o,
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APPENDIX E

Proof of Proposition 3 •'

Assume that the condition .

('(d(F,)) C F. C F, = d(f ,) d(F-) (E.1)

is true. Then a(d(.F,)) V o(d(F.)) C F, l .F2 implies ovd(F,)) C F, n F. C F,

which in turn implies d(F,) = d(f n PF2 ). Likewise d(F 2) d(F, n F 2).

Hence, the condition

u(d(F,)) V (d(F 2))CF,"F2  ,=• d(FO) (F2 ).,

is true.

Conversely, assume that

,(d(F1,)) V o(d(F.)) c F, n F 2  d(f-,) d(f.2) (E.2)

is true. Then F2 C F, implies F2 =F, En Ft. Hence, v(d(F,)) C F. implies

o(d(F1)) V V(d(f 2 )) CL F2 - f I F2 . Because of (E.2) it follows that %

d(F,) - d(F 2 ). Thus, the condition

o(d(f1)) C F2 C F, == d(F,) d(F 2)

is true.
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APPENDLX F

Proof of Theorem 4

The proor of Theorem 4 proceeds in various steps: First we describe pre'isely the

evolution or the estimation pr-,ces according to each team member's model, and detcr-'

mine what each member's model predicts; Then, compare tbese predictions with what

happens in reality. Both Alpha and Beta can describe the evolution of the estimation

process according to their own view of the world as follows: Let al' and fil' be the esti-

mates of Alpha and Bela at time t accordiug to i's perception. (i = Alpha, Beta).

Then,

,= d'(A, fl,', fi•, i...,,) IF.1)

. (B a', a 2, " at') (F.2)

where d' denotes that the estimates are formed according to the rule d and the proba-

bility wea-sie p' induced by the distribution P' on P. Equations (F.1) and (F.2) con-

sidered for all t and for all w. E f describe the evolution of the estimation process ac-

cording to member i's view of the world. To determinc what Alpha and Beta predict

about the outcome of the estimation process in terms of their own moxei4 consider the

following a-fields

F,'A o(A, f,', 92, . P 40

(= Alpha, Beta) (F.-3)
' " F,"" = o• B, aila ,... a,,)

The u-fields F1 iA F'B describe the view of member i about the information available to

Alpha and Beta after the initial observations have been taken and f tentative decisions

have beea exchanged. The tv-field~ FtiA and Ft'8 evolve dynamically as follows:

I
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an(dI (d (P )) C F n4 0 ' C P, *A

Since d satl fees the agrcement condition.s, (F.12) Irnplir, 0hat

do(F'A ) 1 0(S.r ( F") = d(FF) .(P13)

Thus, both Alpha and Beta predict that the eitimaltes 'nI converge and agree after a

ite number of steps.

In reality. the following is happening: At time I - I Alphas estimate 15

.I I, =d'() (A.14)

(where A is Alpha's observation). The message W, is transmitted to Beta. Beta intter

prets this message according to his own view of the world, i.e., he consider tbhat the

realization A of A is such that

• i, = ~ap= d() . F.S

Furthcrmorc, for a consistcati iaterp:ctatioa of the data is is rcqnired that

P411(j 60 > 0(F. 18)
At I=2 Bet a's estimate is

=d7(l?, ;T) (F. 171

(where B is Beta's observation), and this estimate is transmitted to Alpha who interprets

it in terms of his own model, i.e., he considers that the realization Bof B is such that

=$4 d, 6i, 71) (F. 8)'

For a consistent interpretation of the data it'is required that

pA ({A =fi)> 0 . (F.19)

In general, when Alpha receive message ýK he interprets it in terms of his own view of

the world, i.e.,

,= d'(A, , f,#, • ,fK) (F.20)

whicb be sends to Beta. For 3 consistent interpretation of all tbe 'mes!ages received by
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Alphd and 1I0a, it is required that at any time t

1, A (gto = Ij - :5 () > 0

and P 8Nta" - -t I < I < 1) > 0 1.221

"The following result about the evolution oa the probabilities ot (F.22) is true.

Proposition F.I.

After a finite number or atep, * A eitLer

- A (#,A < I < ) & o (F.23)

or

pA(#IA t < I < 1• = ) (F.24)

Moreover, for all j > A

P -At <I'< ). PA(,6,A I <I< *A) (F.25)

"Similar results hold for Pe(a-8 it , < I < t).

•li Proof

The result follows directly from the fact that convergtnce and agreement are predicted

to occur in a finite number of steps by both models. The time aA is given by (F.1).

Based on the proposition above we can complete the proof oa Theorem 4 as follows:

pA(/h4,qSf 1I <t )>0O

". P (ot$-.='it I < I <'t) > 0

are true for all t < aA, aB respectively, and (F.24) is true for both pA(.) and P (B.

then because of (F.13) and the rules by which the messages are interpreted

"(aA, F 44) fAd t Ah e a (fin) ,d 0t area)

for >mx(a A A 8 and the estimates of Aiphe. and Bcta agree asympto'



on tbe other hand (F.23.) vj true at wimee time f or either Alpha or lBeta, then. it thbt

time Alpho or lBeta realite that. the sceq¶2rrice ot recei,-ctI tne,%-xgc', Ii mjwahleI, 0! mr

reanonablY, Alpha or Be(* mu--t conclude that. the two modclii' andI I," Are

sistent.
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ABSTRACTI

In this paper, we develop additional results on the problem of reaching a consensus of opinion

between two decisionmakers provided with different information. Specifically, we study the problem

where the two decisionmakers may have different underlying probability models. We develop results

characterizing the likelihood of a consensus being reached in terms of the nature of the

inter-decisionmaker communications. We also study the problem when the decisionmakers are aware

of the possibility that they may have different models. In this case, the decisionmakers can reach a

deadlock state where neither decisionmaker can learn additional information from the consensus
process, and they cannot reach a consensus decision. This surprising result indicates that

incorporating human uncertainty in probability assessment into the consensus problem can lead to

outcomes not anticipated in the general theory developed in refs. [1] - [71.
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1. INTRODUCTION

The general problem of reaching a consensus of opinion among several decisionmakers

provided with different information has received considerable attention in the recent literature 111-171.
The consensus problem consists of finding a decision, which, to each decisionmaker, is the correct
decision according to a specific decision rile, given his information. Decisionmakers approach a
consensus by exchanging tentative decisions among themselves, thus exchanging pan of their

information.

In [1]-[71, a Bayesian framework was developed for analyzing the consensus problem. Under
the conditions that all decisionmakers share a common prior probability riodel, Aumann[ 1], Borkar
and Varaiya [2], Tsitsiklis and Athans [3], Geanak6plos and Polemarchakis [4] and Washburn and
Trneketzis 15] showed that decisionmakers would approach a consensus undeýr mnild regularity

conditions on the communication pattern.

In subsequent papers [6]j7], Teneketzis and Varaiya showed that relaxing the condition that all
decisionmakers share a common probability model could lead to eventual disagreement Specifically,
they showed that, when the fact that each decisionmakcr's probability modcl can bk diffcrcnt is sccret
knowledge [ 121 (not available to any decisionmaker), the consensus process can reach a state of
contradiction, thereby revealing that the underlying probability models were different.

In this paper, we examine in greater depth some of the issues raised by the results of

Teneketzis and Varaiya [61,[7]. We limit our study to the case of two decisionmakers involved in the
consensus problem. First, we study the question of how likely are the agreement or disagreement

outcomes when the two decisionmakers have secret probability models. Then, we study the
consensus problem where each decisionmaker can have multiple probability models, so that
knowledge that the underlying probability models can be different is common knowledge. Based on
this assumption, we develop a new Bayesian formulation of the consensus problem which is similar

to the Bayesian formulation for games of incomplete information [8]. Using this formulation, we,
show that the general frameworks of Washburn and TIenekewzis 151 and Teneketzis and Varaiya [71 can
be extended to study issues of convergence and agreement in this problem.

Th'RIC iLtofS of•p, is ,,ciis as follows: i. ;czion 2. w;-c th-..e . he.•i,•.L
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framework which is used to study the consensus problem. In section 3, we develop additional results

on the problem studied by Tenekctzis and Varaiya 161, 171. In section 4, we discuss the consensus

problem with multiple modcls. Section 5 contains a discussion of the results.

2. PROBLEM FORMULATION '

Throughout this paper, we will use the following stochastic decisionmaking model:

Let (4), F ) denote a measurable space, with F denoting the a-field of measurable events*. Let
{Pi, i EI} denote a family of probability measures on this measure space. The set I is assumed to be a

discrete set, finite or countable, with the discrete topology. The measure space (Q, F ) represents the

uncertainty present in the decision problem.

There are two decisionmakers (DM) in the consensus problem. DM 1 (2) has a personal ,

probability model' (Ql, F, Pii) ( (fl, F, pi2)), where iI and i2 are selected from the index set I. In

addition, each DM has a probability distribution over I, representing his beliefs that the other DM is -:

using a particular model, as follows:

Denote by I x I the event space of all possible combinations of models for the two DMs, with

the product a-field 21 x 21. Let P,, P2 denote probability measures on this space. DM l's (2's) initial

private information concerning the pair of probability measures { Pli, pi2} used by the DM's is

'represented by the a-field H1 (H 2), where HI is generated by atoms hlj of the form

• .hlj ={il} x Kj, where I Kj 1 .

Similarly, H2 is generated by atoms h2i of the form

h2i Ki x {i 2}, where l : Ki (2) .

r'

Eqs. 1 and 2 mean that each DM is provided with private information concerning his own probability
model, plus the information that the other agent's model belongs to a specific set of models.

*-A-



I,

.. In addition to private information concerning the, permnal probability models used by each L

DM. each DM receiv'es private information concerning Lhe true event which occurs in the measurable

* The reader unfamiliar with the concepts of measure theory should refer to 110]. k

space (L-, F -. This information is repr,'sented by finite-valued F -measurable functions

yi: -- y (3)

Let Y in F denote the a-field induced by y'. Then, Y is a finite a-field.

We can combine the measurable spaces (0, F) and (I x 1, 21 x 21) to form the product space

(1 x I x 1, F x 21 x 21). On this space, define the measures .1, " 2 as follows: Let F1 F. Then,

nl (F,i1 ,i2) = Pl(i,i 2) PiI(F) (4)

-2(Fi,',' 2) P200 2) pi2(F) (5)

[In, n 2 are probability measuies on (D x I x I, F x 21 x 21) because Pi are probability measures for
each i.

For two a-fields A , B , define A V B to be the smallest a-field containing both A and B.
Similarly, define A A B to be the largest a-field contained in both A and B. Define Q1, Q2 to be
the restrictions of H1 ,[ 2 to the a-field

F - {YI Vy 2} x {11IVH 2}. (6)

The decision rule used by each decisiomaker is a map from a-fields A into decision functions,
which depends on the probabilities Qi as in [51. We assume that the decision nies are F -

measurable. For the problems considered in this paper, the decision rules will be of the form

F, arF mi [~i { J((,), u) F ,n (7)

T5
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'd(F) c arg mrin EQ2 { J(o,u)IF } (8)
ucU

for F E L where U is the space of allowable decisions, and the subscript i is used to denote the

expectat i according to the probability distribution Qi. Note that multiple solutions to eqs. 7 and 8
can occur. Usually, there will be a tie-breaking prccedure for selecting dl(F), d2(F). We assume that

U is compact, and that

J:I x U ---- + 0,**) (9)

C is a continuous function of of u for each (d E C2. As in [51, let aT(di(A ) ) be the cT-fieldc generated by the

decision rule d under probability YrHi iwhen the available information aT-field is A.

The consensus process can now be described. EachDM receives initially one measurement Yi"

Based on this measurement and Mis probability model, each DM computes a tentative decision

a-ccording to a dcision :-!e dand communicates it to the other DM. Then, each DM sequentially
interprets the other DM's decision, revises his own decision due to the acquired knowledge, and
communicates his new decision to the other DM. This process creates a sequence of information

aY-fields F 1(n), F .7(n) evolving in the lattice of sub-a-fields of F. With this process, a sequence of

decisions is generated.

Let u (n) (u2(n)) denote the value of the nth communication of DM I (DM 2), selected as a
function of the information available to him according to his decision rule. For (co,i 1,i2) in Q x I x I,
we say that the DMs reach a consensus (agreement) at (wj,i121 if and only if

lim ul(n) = lim u2(n) (10)

The above framework includes the formulations of 11] -171 as special cases. In[ 1f-[51, the
common probability model formulation can be captured in the above framework by letting the set I be
the singleton set { I r. In this case. the probabilities P1,P2 are trivial, and the remaining probabhliiic

framework corresponds to the gener:il framework presented in 151. The formulation of ItI can be

6



captured by selectingP 1 , P2 to be purely diagonal measures, of the form

and the selection of i1, i2 is such that i1 -. i2. In this case, each decisiomaker is convinced that the 7
other decisionmaker will use the same prvbability rrodel as he does. However, the initial models

selected for each player may be different.

3. GENERICITY AND CONTINUITY OF CONSENSUS: THE SECRET MODEL PROBLEM

In this section, we analyze the model of [61 to determine how likely are agreement or

disag2reerpent outcomes. We separatc our results into two cases: the case when the decision variables

are continuous, and the case when the decision variables are discrete. In order to specialize the

formulation of section 2 to the problems investigated in 161 and [71, we make the following

assumptions:

Al. There exists some A e {yi V y 2 } such that

PiI(A) • pi2(A), (12)

A2. The beliefs of each DM conceming the other, DM's probability model, P1 and P., satisfy eq.

11.'

Assumption Al guarantees that the differences in the DM's models are detectable with the available

observation. Assumption A2 specifies that the knowledge that the models may be different is secret

knowledge to each DM.

3.1 Continuous decision variables

When the decision space U is a continuous space, we make the following additional assumption:

, )71.
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A3. U is a convex subset of Rn, and J(w,u) is a strictly convex, differentiable function of u for

each (o.

Assumption A3 guarantees that there exist unique solutions to eqs. 7 and 8. Note that AI - A3 are

satisfied by the model in 161, since the decisiomakers exchange the conditional probability of an event

(X) occurring given their information. In this case,

J(wo,u) (I{ 1( X }-u)2 , (13)

so it satisfies A3. The assumptions in [6] concerning the different probability models of the

decisionmakers correspond to Al and A2.

In order to characterize the likelihood of agreement or disagreement results, we need the

following definitions: Let [ be the space of all probability distributions on (0, {Y 1 V y 2}). Since
{y I V y 21 is a finite a-field, r" is a simplex in Rn, where, n is the cardinaiity of the atoms of

{y I V y 2}. Alternatively, rH can be viewed as a subset of RI with positive Lebesgue measure.

Definition: A resulft is said to be generic in F1 if and only if the set {fI E F1 result is not true forfl

has zero n-l-diniensional Lebesgue measure.

Proposition 1: Under assumptions A1-A3, if for all B D A, either

i. u1(o)) arg min Epi1 {J(0,u)I B} c UO, or
uUr

ii. u2(6)) arg min Epi2{J(0o,u)l B} e U°
uFEU

where U0 is the interior of U, it is genýric that, for some (£ c Q, a contradiction will be reached in the

process of consensus.

Proof: Without loss of generality, assume condition i holds. Consider any instance when a tentative

decision is sent from DM 1 to DM 2. Denote that decision as u,., and the information o-field available

to player I as F _" Then. ut is an F mn.ea,,urable random variahle satnsfying

8..'.
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u = arg min Epi1 { J(O,u) F 1}" (14)
uEU

In order for a contradictica not to occur, DM 2 must be able to interpret ul(o)) in terms of i:- own

probability model; that is,

u2 arg min Epi 2 { J(co,u) F 2 1 , (15)
uEU

where F 21 is DM 2's perception of the in.^ormation available to DM 1. Note that F 2 1 is a coarser

a-field than {Y 1 V y 2}., hence it is also a finite field. Let U 2 1 denote the following subset'of U:

U2= {u e U I u = arg min Epi2 {J(o,u)IBI for some B E F 2 1, for some o-field F 2 1

satisfying{Y 1 VY 2 } DF 2 1 )Y1 }

Note that IJ21 is a finite set, since each a-field F 21 is finite and there are only a finite number of

" a-fields satisfying the inclusion conditions. A necessary conditicn for thie consensus process not to
reach a contradiction is U1(Oc) E U21 for all 0o E f).

Let fi denote the atoms of {Y IV Y21. Let F,(o) denote the atom ofF I containi'i.. (o, and
f(0)) deno!e the atom of { y V y 2} containing o). Select co c A such that Pi,(f(co)) # Pi2(f(o)). Such

a c xsts by ass.......

u (co) =arg min { Epi { Epi (J((),u)l {Y iv Y2}} IF
UEU

J J(v,u) Pil (dV)

= argminEpi1 f F1(us) }
"U E U J P I (jV)

VEfu)

Dcfinc J(f;.u) as

r-



J J(v'u) P (dV)
J(ft ,u) V: w 1  (16)

p11(f.)

Then,

~~~~f C F l (W f|) -f u
';- ul(w) : argmin {fc (•)} (17)

'-': u E UPl! (FI(M)

41

By assumption, the minimizing value is in the interior of U; a necessary and sufficient condition

characterizing ul(wo) is

7. P, 1 (fi) .u(fi,u1 (G))) = 0. (18)F,(co)•fi

-i Since u1(ci) must belong to U2 1, this means, for some a E U2 1, A E F 2 1,

f- Pi2(fi) j 1(fi, a) = 0. (19)
A;?

For each aý, A the set of P12 in 1" satisfying eq. 19 has n-I dimensional Lebesgue measure 0, since eq.
%5 19 imposes a linear constraint on Pi2.'Since there is a finite number of a in U21 and A in F2 1, the

set of 0i2 in fl satisfying eq. 19 for some a, A also has n-I dimensional Lebesgue measure 0, which
implies that a contradiction is generic for some t in A. q.e.d.

The results of proposition I can be understood in terms of the example below:

Exampie 1: Let Q = 10,21 x [0,31, and let F denote the Borel set% in Q. Let the a-field Y1 be

defined by the atoms {wlr E a:), {&,joGa 2}, and the a-field Y 2 be defined by the atoms {owlo £ b, },

10
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{{o~ob2) and {coa b3 ), where ai, bj are defined in figure 1. Define probability models P1, P2 as:

P1 (A) p j(A)/6, where p• is two-dimensional Lebesgue measure

P2(A) - gi(Ar•bl)/36 + pL(A"i)/24 + 7ji(Arib 3 )/72.

P1 is uniformly distributed over f" while P2 is uniformly distributed conditioned on bi, but has

P2(b1)= 1/6; P2(b2)=1/4; P2(b3 )-7/12.

Let i1 - 1, while 2, so that DM I uses probability model P1, while DM 2 uses probability model
P2. The decision rule used by the DM's is defined by eq. 13, where the event is event X in figure 1.I As noted in [6], when o e a, r) b3 , and DM I communicates first, there is eventual agreement,

although the DMs have very different reasons for reaching that agreement. In order to show that

disagreement is generic, we will show that arbitrarily small perturbations to P2 will result in

disagreement. Specifically, let

P(bl) = (2 + el)t1 2; P(b2)= (3+e2)/12 ; P(b3 ) = (7-cI- Y12.

As in [6], DMI's first communication is uI - .5. In order for this value not to be a contradiction,

either

3 l + 2'2= 0 (20a)

or
or E + 2e2 4. (20b)

S The two-dimensional Lebesgue measure of the set of all El, £2 satisfying eqs. 20 a or b is.0, since it is

the union of two lines. Hence, for almost all choices ofhe, £2, a contradiction will be reached in the

first communication.

The mcason for the genericity of disagreement in proposition I is that, although each DM can

observe only a finite number of observation values, he can communicate a continuous number of

decisions. This enables the other DM to detect differences in the probability models. Conditions i or ii

in proposition I guarantee that the announced decisions will vary with small differences in probability

models.

i

11
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3.2 Discrete Decision Variables

In this subsection, we assume that the space U is discrete. Let fi denote an atom of {Y IVY 21.
We define a metric on II as follows:

For P, P2 el

d(PI,p2) = max IPI(fi) - P2(fi)j. (21)1 fj
hI!I

This metric is equivalent to, the Euclidean metric on Il

e oniliQn: An agreement or disagreement result is said to be continuous in H at PiI, pi2 if

agreement or disagreement continues to hold for all PI, P2 in a neighborhood of P1i, Pi2.

% Assume in addition:

A4. For any A E {Y 1 V y 2}, there exists unique ul, u2 in U such that

=u arg min Epi1I{J(o, u) I coe A
ueU

I

u= arg min Epi2 {J(w,u) I o E A)
UEU

* With this assumption, we have the following characterization of agreement, or disagreement outcomes:

. Proroition 2. Under'assumptions Al, A2 and A4, if agreement occurs for Pi ,p02, it is continuous in

H. If disagreement occurs for PiI, Pi2, it is continuous in rI.

Proof: Without loss of generality, assume that Pit, Pi2 result in agreement. Denote by F ,(n) (F 2(n))

DM l's ( DM 2's ) sequence of a-fields generated in the consensus process. Each one of these fields

is coarser than j Y I V Y 2}, hence finite. For any time interval n,'the atoms ofF 1(n) and F 2(n) are

12
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elements of {Y I V Y 2}. For any A e {Y 1 V Y 2}, define the function!
, p () J-(fi ,u)

"L(P 1', A ) ftcA 1 (22)

Spit A )

This is a continuous function in II. Because of asumption A4, we can find a 81(A) such that, for

d(PI, Pl) 5 81(A),

4,-y. t• tP J(f, U)
argmin {" )tU .u U p i( A )

SI. P fI) J..(fl,u)
igargmtn f I I

UE U P'( A

A similar result can be established in terms .of 82(A) for DM 2's decisions. Select a as

8 = min { 81(A),8 2(A) }. (23)

This minimum exists because there are only a finite number of A in {Y I V y 2}. This choice of 8

• ' guarantees that the exchar ged sequence of decisions and the o-fields inferred by the other DM are the

same for all probabilities PI, p2 satisfying

d(Pi , P1 ) :

d(Pi2, p2 ) < 8,

13
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thereby completing the proof. q.e.d.

The result of proposiLion 2 depends critically on assumption A4. However, an argument
similar to the proof of propostion I establishes the following resulL

Proposition3. If, for each atom fi e {y IVy2},

R(fi, u) *(fi, v) if u*v,

,.the Assumption A4 is generic in Ij.

Proof: If assumption A4does not hold for Psi, there must exist a set Ac {E'Y IV y 2} and u, v EU,

u*v, such that

EpiI (J(0,u) a)e A) EpiI {1(o),v) I o)e A}.

i- This implies that

fICA fiC A

Since 1(fiv) * (fi,u) for any atom of (Y I V Y 2), this implies that the set of PiI which satisfy this

equation has Lebesgue measure 0 in fl. A similar argument for P12 completes the proof. q.e.d.

Exampe ,2: Let (QF), Y !, Y 2, and X be defined as in example 1. Define probability models p 3,
4 "as:

-. P3 (A) = 2g(Ar'al)/15 + 4(Aioa 2)/5, where g. is two-dimensional Lebesgue measure,

14
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p4 (A) = gAra 2 )/5 + 4g(Ac'aIrb I rX)/95 + 12g(Acna 1 blcIX) + 12g(A)b 2"l 1)/95 +
36(L(Arialrib 3rýX)/95 + 12g(Arialnb 3 nX)/95

where X is the complement of X in Q. Rather than work with the unconditional probabilities, what is
important is to evaluate the conditional probabilities of events given available information. Thus,

P3 is uniformly distributed conditioned on ai, with
p3 (a1) z.4; p3(a2 ) = .6.

P4 has the same distribution as P3 on a2, but differs on a1 , as

P4(Xlal*bj) = .25; P3 (Xlalribl)= .5 (24a)

P4= pa(xlalr 2) = .75 (24b)
4(Xla1 rC03 ) =.50; pa(Xlal•ba)= .25 (24c)

p4(Xja 1r(b 2ub 3)) = .6; p3 (Xlaln(b2 ub 3))= .5 (24d)

P4 (Xjal)'= 10/19 ,; Pa(Xlal) = .5 (24e)

LetU={0,1}. Let

J(co,0) = .53 if co c X,

= OifWo.2,

J(to,1) =OifooeX

= .47 if w•e YX.

With this definition of J, the optimal decision for DM 1 given an information set A is given by

uI = I if Pil(wtoX IA) > .47 (25)

= 0 otherwise.

The same decision rule is optimal for DM 2, using the probability Pi2 .

Assume i 1 = 3, while i2 = 4, that DM I exchanges his decision first, and that the DM's alternate in
exchanging decisions. As in example I, assume that o e a1I n b3 . From eqs. 24e and 25. DM I's
initial decision is !. That is, Ul1(1) -- I. If DM l's information had been a2, his decision would have "

been uI 0. Hence, according to DM 1, he has signalled oE ai to DM 2.
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According to DM 2's probability model, u1(l) = 1 implies coe a1. Hence, DM 2 believes co e a1 ri

b3. His optimal decision is u2 (l) = I, because of eq. 24c. According to DM 2, his decision has

signalled co e 62 u b3, because of eqs. 24a and 24b.

Because of eqs. 24 ab,c, DM I interprefs u2(l) = I to mean o) e a1 r) (blub2 ). His optimal decision

is u 1(2) = 1. Hence, a consensus has been reached at u 1(2) = u2(2) = 1. However, they have

reached this agreement for the wrong reasons, since DM 1 believes Co e a1 r (blub2 ), whereas in

actuality, cw a1 ar b3! Note that any changes in either P3 orP4 which would change the numbers in

eqs. 24 a-e by less than .02 would continue to result in agreement.

Suppose that the order of communication is reversed, so that DM 2 ,ommunicates first. The optimal

decision u2 (1) = 1. Note that P4(X I o) e b2) <.45, p4(Xlo b1) <.2. Hence, DM2 believes he

has signaled'co E b3y

According to DM 1, he interprets u2(1) = 1 to mean co b3. Hence, he believes er e a, r b3 . His

optimal decision, according to eq. 24c, is u1(1) = 0. This decision cannot be understood by DM 2,

because he expected ul(1) = 1 whether DM 1 knew a1 or a2 . Hence, the DMs have reached a

contradiction. Note that this contradict.,-m will be reached even if PiI or Pi2 are modified by .02.

5 Hence, the disagreement outcome is also !:ontinuous.

The above re.ults illus:rate that, when the decision spaces are discrete, small discrepancies in

S Ithe probability models of the decisionmnkers will not affect the consensus process. They also show

that the set of pairs of piobability models for which consensus occurs has positive Lebesgue measure

in f1, unlike the result in the continuous decision case of the previous section. However, the set of

A pairs of probability models for which contradictions occur also has positive Lebesgue measure.

Hence, contradictions are common phenomena in the consensus process.
-S

The question still remains: How does the consensus process proceed once a contradiction is

encountered? Such a contradiction reveals that the basic assumption that PI(il,i2) = P2(il,i2 ) = 0 if

i11 i2 , is violated. In the next section, we present a plausible model for this process, and study its

implications.

16



4. CONSENSUS PROBLEMS wmI v,,diuItPL. PROBABILITY MODELS

When the 4,ecisionmakers in the conweJ -us process have different subjective views of the

world, and these differences are secret knowledge, the results of [6]-[71 show that a contradiction
outcomrc is often reached whereby the existence of these differences becomes common knowledge. At

this point, our model of how the consensus process proceeds is that each decisionmaker models
statistically the types of probability models which the other decisionmaker may be employing, and
acquires information through the consensus process concerning the possible models used by the other

DM, and the uncertainty in the event space Cl. Within this framework, we investigate convergence and
agreement issues for two cases: When the statistics of the types of probability models are common
knowledge, and when these statistics are secret knowledge. The analysis is based on the mathematical

formulation developed in section 2, where the probability distributions PI, P2 represent the statistics

used by each DM.,

We make the following assumptions:

i A5: P1 , P2 are common knowledge.

A6: The decision rule d satisfies the agreement condition

Recall that P1 ,P2 are the subjective probabilities on the space of possible model pairs (i0, i2 ).
Assumption A5 implies that the subjective statistical distribution of possible probability models for

[M each decisionmaker is known to the other decisionmaker, and this fact is common information. Note
"* that we do not assume that these distributions are equal. This allows DM 1 to believe he has a

different range of possible decision models than DM 2 has, and viceversa.

The decisini rule d is said to satisfy, the agreement condition if, whenever G 1:2 G 2
r o(d(G 1)), then d(G 1) = d(G 2)- The agreement condition implies that, if a decision is based on

information which is common to the information a-fields G 2 and G 1, then knowledge of either G 2

Sor G I would -esult in the same decision. In [5) and [7), a sufficient condition was developed to
characterize when a decision rule satisfies the agreement condition. When specialized to our model,
this condition can be stated as:

17
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1PX.

rosition 4: Assume that there is a total order < on U. Let Dl(ow), D2 (o0) denote the set of solutions

ofeqs. 7, 8 for each co. If ul(6(), u2 (f) are selected to be the minimal elements in Dl((o), D2 (o))

respectively, then the decision rules dI, d2 satisfy the agreement condition.

Proof: See [51, [7].

Under assumptions A5 and A6, we can prove the following result:

E•gW .ion5: Under Assumptions A5 and A6, if iI = i2 and o e fl is such that the consensus

process reveals that iI = i2 to both decisionmakers, then the decisionmakers reach a consensus for a

Proof: Without loss of generality, let i1 = i2 1 I. The consensus process starts with the initial

information a-fields

G 1 (O) =Y x-Hl 26a)

G 2(0) =y2 x H2  (26b)

After each communication is heard, each decisionmaker learns additional information. The evolution

of information of each decisionmaker can be described by the evolution of a dynamical system in the

lattice of sub-a-fields of E, as in [5]:

G (n+l1) G I (n) V a(d2(G 2 (n)) (27 a)

G 2(n+1) = G 2 (n) V a(dl(G I(n)) (27 b)

(or G l(n+l) = G (n) V (Y(d2(G 2 (n+,l)) (27c)

G 2(n+1) G 2(n) V a(dI(G I(n)), (27d)
depending or. whether communications are simultaneous or stag-ered),

where di(G ) is the decisiun rule of eqs. 7 or 8 applied to the atoms of the u-field G. The lattice "

operations are V and A, where A V B represents the coarsest o-field containing both A and B , and
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A AB is the finest a-field ccatainea in both A and B. Because of AS, the evolutions indicated in eq.

27 are common knowledge. Note that these dynamical systems are evolving on a lattice of finite

fields, and that they generate a strictly increasing sequence of a-fields. Hence, after sonm finite time t,

a limit must be reached such that, for all s > t,

G(S) =G I =G 1 V o(d2(G 2 )) (2.8a)

G 2(s) =G 2 =G 2 V a(dl(G 1)) (28 b)

Eqs. 28 establish that the consensus process converges to a limit; that is,

limr ul(n) = ul*; lim u2 (n) = u2*. (29)
n-4- n-4-

In addition, eq. 28 implies :hat

G 1 : a(d2 (G 2)) (30 a)

G 2 ;a(dl(G 1)) (30b)

Furthermore, the fields generated by a decision rule are contained in the information available for

decisions. That is,

G 2 ao(d 2(G 2)) (31 a)

G 1 23 (d|(G 1)) (31 b) •-.

Hence,

G 2 23G 2 A G I D o(d2(G 2)) (32 a) .- '.

GI G 2 AG 1  D a(dl(G 1)) (32 b)

19
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By assumption, the decision rules satisfy the agreement condition. Hence, by eq. 32,

d l (G 1 ) = dl(G I AG 2 )
(33)

d2 (G 2) - d2(G I A G 2)

Select co fQ such that i1 = 1 = i2 is common knowledge. Since the o-fields are increasing, there is an

atom g containing co in G I A G 2 of the fornig = (A,1,1), where Q : A. Since g is an eleinent cf

both limiting fields G I and G , ,it follows that

di(g) = arg min EQI { J(co, u)'I g I
uEU

(34)
f arg min {Pj(,I) EFI' {J(wu)Io E A}}..~ U E

Similarly, since i2 = I in g,

d2(g)= arg nain EQ2 J(o), u) g}
uUE

(35)

= arg min {P2 (l,1) Epi {J(co,u)Icoe A}}.
uUE

Note that the functions being minimized are simple multiples of each other. Thus, d2 (g) = dj(g) for

all such g. Coupled with eq. 33, this completes the proof.q.e.d.

According to the above proposition, even if the decisionm• -ers have the same probability

model, consensus is not guaranteed unless it becomes comon knowledge that iI = i2 " On the other

hand, the condition that co E 92 is such that the consensus process reveals that iI i2 is sufficient but

not necessary for reaching a consensus. Tlese points are illustrated by the following example.
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Lxami~1 3: Let (QF), Y 1, Y 2, X, P3 , p4, U and J(to,u) be defined as in example 2. Consider the

decision rule defined in eqs. 7 and 8. Assume that iI = i2 = 3, so that both dccisionmakers have the

same probability model. Assume further that there exists a probabi'ty distribution Q on {3,4} such

that

'P1 (i1 =j,i2,=k) = Pl(i1 =j,i2=k) = Q(j)Q(k). (36)

That i3, each decisionmaker believes that the other DNMs decision model is selected independently -.

from a known statistical population, where the set of possible models was {P3 ,,4}. Furthermore, the

statistics, of the selection are known identically to both decisiomakers. However, the precise model

selected is private knowledge provided to each decisionmaker.

Assume Q(3) .1. As in example 2, we assume that the DMs alternate exchanging tentative

decisions. As in example 2, DM I's first decision is ul(I) = 1, and this signals that w c a1 to DM 2.

This decision does not reveal whether iI =3 or i1 =4, because if i1 =3 or 4, dhe same decision would

be made.

At this point in the consensus process, DM 2 knows that wE a1 r) b3 whethei iI =3 or 4. Hence, by

eq. 8, since i2 = 3, the optimal decision is u2(1) = 0. In order to identify the information signalled by

this decision, we must examine the optimal decisions corresponding to the possible information sets

that DM 2 could have, from DM l's perspective. These decisions are:

Ifi 2 = 3,•eal nbI ,thenu 2(l) = lbyeq.24a

If ia 1 3, co e aI, rb 2 , then u2(0) = 1 by eq. 24 b

Ifi 2 =3, (0 Ea 1 r) b3 , then u2(0) = 0 by eq. 24 c

Ifi 2 =4, oEaI r b1 , then u2 (l) = Oby eq. 24a

If i2 = 4, co c a, rib 2 , then u2(0) = I by eq. 24 b

If i2 = 4,oea I b3 ,thenu 2 (1) = 1 by eq. 24 c.

Hence, DM I knows that either i2 3, E a1 I'mb3 ori 2 =4, oaI nb 1. According to eq. 7, his

optimal decision is selected as

21

* *



u 1(2) = argrmin EQI { J(w,u) IF}
uUE

- arg min { Q(3) 1(.25)(.53)1{u = 0} + (.75)(.47)l{u=l 11 +
U e {0,1} Q(4) [(.5)(.53) I{u-0) + (.5)(.47) l{u=l1]) (37)

where I{ } is the indicator function, and a constant scaling factor has been omitted. It is easy to see

tlat, for Q(3) < .12, u1(2) = 1. Note that, ifi1 =4, eq. 37 becomes

u1(2) = arg min Q(4) [(2/3)(.53)I{u = 0) + (2)(.47)Ifu=1}] +

u E {0,1} Q(3) [(3)(.53) I(u=0} +. (3)(.47) Ifu=l}]} (38)

, So, u 1(2) should be 0ifij =4. Therefore, u 1(2)= 1 signals that i1  3toDM2.

. DM 2 now knows iI = i2 = 3, and co e al r) b3 . As before, his optimal decision is u2 (2) = 0. This'

decision does not convey any additional information to DM 1, because the decision u2 (2) 0 did not

depend on the information iI = 3. Since DM I obtains no additional information, his tentative decision
-.6'

\. .,. continues tc be u 1(2) = 1, and the two decisionmakers agree that an agreement cannct be rearhed. The
common information which forms the basis for this disagreement car, be summarized in the atom

{(O,il,i 2 ) i(o E aI, rb 3 , i =i2 =3),or (0o) a, n bl, i= 3, i2 =4)).

__ Consider now the same problem, but assume that DM 2 communicates first Then, since o e b3 and

P 3 (X I b3 ) = .55, then u2(l) = 1.DM 1 observes al and ieceives u2 (1) = 1; by the same argument as

above,he concludes that DM 2 has observed b- and uses either model 3 or 4. His decision is u 1(1) =0.

DM 2 is aware that DM I knows both a, and b3, so when he receives ul(l) = 0, he interprets this to

mean that iI = 3 arid Co c a1 and b3 . Hence, he communicates u2(2) = 0. This reveals that i2 = 3,

and the decisionmakers reach a consensus.
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The results of example 3 are rather surprising. Unlike the cases studied in [6] or [71, there is

no unmodeled secret information present in this consensus process. Indeed, both DMs are actually

using the same probability model; furthermore, they have identical probability distributions over the

class of probability models, and this is common knowledge! Nevertheless, a disagreement outcome
occurs. This implies that even admitting the possibility that the other DM can have a different

subjective probability model than your own is sufficient to prevent reaching a consensus. The reason

Sfor this effect is the difference in the probability distributions used by each DM in eqs. 7 and 8 when
one DM is unable to identify the probability model used by the other DM.

How likely is it that the conditions of proposition 5 are met? Our analysis of the previous

'section can be extended to establish the fcIlowing propositions:

FErpsition 6. Suppose that ,he decision space U was continuous, and that assumption A3 was true.
Assume iI = i2 . Assume additionally that, for all B E F

.L ul(n)= argmin EQI{J(co,u)AB) eU°

iL u2 ((o)= arg min EQ2{J(cou)I B) eO U

ueU
where Uo is the interior of U. Then, the outcome that the consensus process will reveal that i 2 is

I! generic in Il'k, where k is the cardinality of L

PrQ .stion 7: If the decision space U is discrete, i1 = i2 , and for any A l E, there exists unique u1,

u2 in U such that

uI = arg min EQI {J(to,u)J A}Su•UE

u2 arg rin EQ2 {J(o),u) I AJ

u EU

then the outcome that a consensus process reveals that iI = i2 for a specific (o is continuous in 17k.
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The proof of these propositions follows directly the proof of propositions I and 2, and will not
I be reproduced here. Essentially, proposition f is based on the fact that the set of probability models

for which a continuous decision fails to discriminate among a finite set of models has zero Lebesgue

I ,,measure in the space of all possible probability models. Under the assumptions of proposition 7. one

can show that the s:quence of a-fields generated in the consensus process does not change with small

perturbations in the set of individual probability models.

When il * i2 , it i! possible to show, by arguments similar to :hose leading to eqs. 27-32 that

I the sequence of decisions {dl(G l(n))) and {d2(G 2(n))) will converge todl(G i) and d2 (G 2)
respectively. However, since the probabilistic models of DM I and DM 2 are not the same, whether

or not a consensus is reached depends on the event Ca e 0 and the order of -,ommunication. If g is an

atom of G I A G 2 containing coe c!l then a consensus will be reached if d1 (g) = d2 (g).

The above results were based on the assumption that the underlying statistical modis P1 and

"P2 used by each DM are common knowledge. When these models diffekent, and this fact is secret

knowledge, and the decision processes of DM I and DM 2 are consistent with their own beliefs, then
the consensus process reaches one of three different outcomes after a finite number of

I communications:

1. A consensus is reached,
2. DM I and DM 2 realize that their underlying statistical models are inconsistent,

I |3. DM I and DM 2 agree to disagree because they cannot gather any additional information
from the consensus process.

In order to esablish this, we must describe the evolution of the decision processes according to

each DM's subjective decision model, and determine what each DM's model predicts. Then, we

compare the predicted communications with the actual communications heard. Let uI1 (n), ul 2(n)

denote the decisions of DM I and DM 2 at stage n according to DM l's subjective decision model.

Similarly, let u2 1(n), u2 2(n) denote the decisions of DM I and DM 2 at stage n according to DM 2's

subjective decision model. Then, according to DM I's view,

u1I(n) = dII(y 1,u 12 (0),. .. . ul 2(n-1)) (39 a)

24

bzI
~ ea~~ :.



U

012(n) dl 2(y2 ,ull(1) .... u IuI(n-1)), (39 b)

where dlj denotes the decisions formed by the decision rule d according to the probability measure

SYrFI1. Similarly, according to DM 2's view,

u2 1(n) - d2 1(y1,u12 (l) .... ,u 1 2(n-1)) (40 a)

"u22(n) - d22(y2 ,ulI(I),..-,uIl(n-l)), (40 b)

where d2j denotes the decisios fo-d by the decision rule d according to the pvobability measure

S'•l2. Fquations 39 and 40 describe the evolution of the consensus process according to DM l's and
DM 2's perctAion, respectively.

o1 determine what DM 1 and DM 2 predict about the outcome of the decision processes in
terms of their own perceptions, we define four sequences of information af-fields, representing DM

V I's actual know!cdge (G I I(n)), DM l's belief of DM 2's knowledge (G 12 (n)), DM 2's actual
Sknowledge (G 22(n)) and DM Ts be ef Of DM l's knowledge (G 2 1 (n)). The= fields evolve under
;? •. communications as:

G 11(n+1)=G I (n) V a(dI2 (G 12 (n))) (41 a)
G 12(n+l)= G 12 (n)Va(dll(G I l(n))) (41 b)
G 2 1(n+l) = G 2 1(n) Va(d22(G 22 (n))) (41 c)00 G 22 (n+1) - G 22 (n) V a(d21 (G 2 1(n))). (41 d)

".-A with initial conditions

G 11 (0) = G21(0) Y 1 x HI (41 e)

G 22?(0) = G 12(0) y2 x H2 . (41 f)

~ €. As before, thea., evolutions occur in a lattice of (-fields where the maximal element is a finite a-field.
Hence, repeating the logic of the proof of proposition 4 establishes that the consensus process will
reach steady-state at er a finite number of iterations. Denote this finite number as T.

25
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To estrblish the type of outcomes possible, we must examine the consensus process closely.

SAt st-ge 1, DM I's decision is uI !(1) = dI I(Yl). This message is transmitted to DM 2, who must

interpret this message according to his own subjective decision model. That is, he must-find

realizations ( i', y1 ) of possible models and observation values such that u 1 i(l) = d2 1(y1,). For a
consistent interpretation, one must have

,"2 Prob{ (yl'1 ull(1) = d2 1(yl), il = i' > 0. (42)

If this is not possi.bIe, DM 2 will discover that the decision models are inconsistent, leading to outcome

2. Otherwise, DM 2 ectsu22 (l) - d22 (y2 ,uII(1)).

At tlis stage, DM I must interset consiste itly the communications heard from DM 2. As

'~ before. he: must find realizations (j', y2 ') of possible maodels and observation values such that u2 2(0)

= d12 (y2.,ul 1(1)). For a consistent interpretation, one must have

~''Prb{ ( y2 '1u22(0) = d12 y2 ',Ull(1)), i2 =') > 0. (43)

Define PI (n, i), P2(nj) as follows:

P pI(ni) = Pi{ (yIuIl(j)=d2 1(yl',u22 (1),, u22(J)),il =i,

for all j<n) (44a)

2(nj)= pi{ (y2 lu22 (J) =d 12 ( y2 ,,u1 0(1),."., U1 l(j)), i2  j,

.: for all j < n (44 b)

It is easy to see that, for each i c I Pl(n,i) and P2(n,i) are monotone decreasing sequences in n.

S • Since the consensus process reaches steady-state after a finite number of communications (for n T),

. there are three possible outcomes:

1. There exist no i orj such that both (45)

P1(Tji)P1 (iJi2) >0
p2(Tj)p2(i ,j) > 0
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2. There exist one i and one j such that (46) 1
Pl(T,i)Pl(i,i2 ) > 0

P2 (Tj)P2(ilJ) > 0

3. There exist more than one i or j such that (47)

Pl(T,i)Pl(i,i2 ) >0
p2(T~j)P2(i 10J > 0

Wben eq. 45 holds, the inconsistencies among the statistic2l models P1 and P2 are detected in

the consensus process. It is possible that the true probability model used by DM I was not censidered

possible in DM 2's subjective distribution. In this case, for some n, either d, 2(r) * d22() or
d2lM ,'dllM.

When equation 46 holds, either a consensus outcome will be reached for w £ fc, or an

inconsistency in the underlying probability models Pi and PJ will be discovered. If i - j, this is the
caw analyzed in [1]-(51; in this case, the results of [5] guarntee that di I(") - dl 2 (M) - d2M

d22r, so a consensus outcome is reached If i * j, this is the case analyzed m [6] and [7). In this
case, two types of outcomes are possible: either dl 2 (T) * d22 (T) or d2 1(T) M d II(TM, s& that an

inconsistency in models P1 and PJ is detected, or both d I I() = d2 1(T) and d22(T) d !: 2(T). For the

second outcome, the results in [6] and [7] imply also that dI IF M d22M().

When eq. 47 holds, there is residual ambiguity in both the statia al models and the urny "'ng

probability models. As discussed in example 3, it is possible to have dl 2 (M) d22 (T), d2 1(T) =

d1 1 CM), and d1 1(T)d22 for all n, in addition to the other two outcomes. In this case, no
inconsistencies have been discovered between either the statistical models Pl and P2, or the
underlying probability models Pi I and Pi2. Rather, the decisionmakers have rached a stage where no
additional information will be exchanged in the consensus process. At this stage, the DMs agree that z

consensus cannot be reached, and discontinue the process.

The above discussion has established the following proposition:

PrQposition 8: Assume A6 is satisfied, and that the differences between P1 and P2 are secret

knowledge to both decisionmakers. Then, the consensus process will reach one of three possible
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outcomes after a finite number of communications:

1. A consensus is reached,

2. DM I and DM 2 realize that their underlying statistical models are inconsistent,

3. DM I and DM 2 agree to disagree because they cannot gather any additional information

from the consensus process.

A result similar to Proposition 8 was obtained in [7]. However, when each DM considers a set

of possible underlying probability models for the other DM, as is the case in this section, the

Sconsensus process can result in an outcome not predicted by the model of [7]; namely, the DMs can

agree to disagree even though their underlyinS probability models have not been established as

m•oinnistent with each othfr. This point is illustrated by the following example.

Exal. 4: Let (,F), Y 1, y 2 , X, pl, p3 , p4 be defined as in examples 2 and 3. Let J(o),u) be
defined as in eq. 13, and let U = [0,1]. Let 1= { 1,3,4) be the set of possible probability model

indices. Consider the decision ruL, defined in cqs. 7 and 8. Assume that iI - 1, and P 1(,I) =.3,

Pl(1,3) - 0, PI(1,4) - .3, so that DM I believes DM 2 is using either model I or model 4 with equal
probability. Assume i2 - 4, and P2 (1,4) - 0, P2 (3,4) - .1, P2 (4,4) -. 1, so that DM 2 assumes that

DM 1 is using either model 3 or model 4 with equal probability. Assne that o• aI r, b3 and DM I
communicates first.

The first tentative decisioo of DM I is u I 1 (1) = .5. According to DM 2, if DM I was using model P3 ,

then u2 1(0)= .5 when coe a1, and .25 when wea 2. IfDM I was using model p4, then u21(l)

.25 for any a. Hence, DM 2 believes i1 =3, and oo e a I b3. According to his own model, P4,

DM 2's communication is u22(1) = .5.

In communicating u 1 (1) = .5, DM 1 believes that he has signaled thati = I and co e a,. Hence, DM
1 expects u12 (l) =.5 ifi 2 = I ando E bl,or if i2 =4 ando)E b3. Consequently, DM I chooses

ul 1(2) = Pl(Xlalnbl) Pl(alcnbl)Pl(1,1) + Pl(Xlalr'b3 )Pl(alnb3)Pl(i,4)

Pl(alnbl)P1(l,1) + Pl(alnb3 )Pl(l,4))

= .375

Since models p3 and P1 have the same distribution conditioned on aI, it is also true that u2 1(2) =

2,
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.375. Since DM 2 believes he already knows i = 3, and coe aI r b3 , hP. learns no additional
information, so his decision continues to be u22 (2) = .5. This decision conveys no additional

information to DM I, so the consensus proess stalls at this point, and both decisionmakers agree that

a consensus cannot be reached.

5. CONCLUSION

In this paper, we have studied the problem of reaching a consensus in a group of 41EA

decisionmakers by exchanging tentative decisions using a Bayesian framework. When the LW
decisionmakers have different probability models and the existence of those differences is secret t

knowledge, the results of Teneketzis and Varaiya [6], [7] characterized all possibie outcomes of the

consensus process into two types of outcomes:

1. Reaching a consensus decision for the group,
2. Reaching a contradictior..

The results of section 2 shed additional insight concerning how likely each of these outcomes is. By

defining the concepts of a generic outcome and a continuous outcome, we have shown that, when the

decision space is continuous-valued Aid some regularity conditions are met, reaching a contradiction is
a generic outcome. In contrast, wnen the decision space is discrete-valued, both outcomes are
continuous, so that small deviations in probability models result in the same outcomes.

One of the limitations of the results of Teneketzis and Varaiya is their assumpion that ,'

knowledge that probability models could be different is secret knowledge to the decisionmakers,

although in fact the probability ni~4c's are different. If the decisionmakers are humans, subject to

various biases and inaccuracies in evaluating ptbobilities [91, knowledge that there can exist ..

differences in probability models is best modekiv a.; common knowledge. In section 4, we developed

a Bayesian framework whereby this knowledge is represented as common knowledge, and the specific *"

individual probability models ar. represented as private information for each decisionmaker. In this

framework, the consensus process serves both to reveal information concerning the probability model I

of each decisionmaker, as well as information concerning the problem uncertainty. A surprising result XX

is that, even when the probability models of the decisionmakers are identical, and selected
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independently from identical probability distributions, the-! fe two possible outcomcs:

1. A consensus was reached.
2. A point was reached where both decisionmakers, on the basis of common information,

agree that a consensus cannot be reached.

The second outcome has not been predicted by the previous formulations [1] - [7]. Indeed, it seems;

to contradict the title of Geanakoplos and Polemarchakis [4], "We can't disagree forever." Our results

in section 4 show that merely admitting the possibility that the probability models am different is

sufficient to generate the second outcome. Again, we characterize how likely these outcomes are for

both continuous-valued and discrete-valued decision spaces U.

In conclusion, we have shown that, in our Bayesian framework, when the decisionmakers

bring human biases and inaccuracies in probability assessments into the consensus process, a

consensus may not be reac -4d even if the decisionmakers share the same probability model The

results depend explicitly on the Bayesian formulation for incorporating uncertainty co.cerning the

other decisionmaker's true probability model. A different formulation, similar to Kreps and Wilsons'

formulation for sequential games [11], could be developed whereby each decisionmaker considers

only the mcst likely interpretation of the results as the basis for selecting his tentative decisions. The

merits of each formulation rest ultimately in their ability to help us understand the behavior of humans

in consensus decisionmaldng.

3i
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ABSTRACr

Subjective games of incomplete information are formulated where some of the key assumptions

of Bayesian games of incomplete information are relaxed. The issues arising because of the new

formulation are studied in the context of a class of non-zero-sum two-person games, where each

player has a different model of the game. Two types of games are invest"gated: static games and

infinitely-repeated games. It is shown that in the static game counterintuitive outcomes of the game

occur because of the different beliefs of the players, and that these outcomes indicate to the players

that their models were different. When the game is repeated infinitely often, it is shewa that this

repetition can alleviate the differences in the models of the players and lead to eventual cooperation.

When multiple equilibrium solutions are present, the effect of various bargaining theories on the

outcome of the game is investigated. It is shown that, depending on the bargaining model, the

players may agree on the outcoTne of the game or they may realize that they have different models.
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SECTION 1: INTRODUCTION

Game theory is the mathematical science which studies decisionmaking in' situations of
potential conflict among decisiormakers. The requirements of formal game theory are strict
regarding the ruler of the game and the portrayal of exogenous uncertainty. Due to these
requirements, there are many strategic situations which cannot be initially modeled as games
because players lack informaion about available strategies, utility functions or outcomes resulting
from various strategies.

Specificanly, the key requirements of formal game theory are:

Al. 7be of the game am common information a

A2. Exogenous uncrt'.inty is portrayed by objective probabilities which are common
knowledge to all players.

A3. Players are fully committed to a'gdori strategies

A4. Players are rational.

As Giame theory developed, attemps were made to relax some of these assumptions.
Assumpticn A3 was a consequence of the normalization principle of Von Neumann [12]; Aumann
and Maschler [I] were the first to point out via a simple counterexample the inappropriateness of

the normalization principle under certain conditions; since then, considerable developments

followed by relaxing the assumption of prior commitment [2]-[6).

Harsanyi[71 and Aumann-Maschler et al. [81 pointed out that in some military problems,
players may lack full information about the payoff functions of other players, or about the physical
facilities and stoategies of other players, or even about the amount of information that other players
have about the various aspects of the gamet situation. Thus, Harsanyi [71 first relaxed assumption

SAI and formulated and developed models of games of incomplete information. Harsanyi modeled
the incomplete information as an exogenous random move (Nature's move) to select among
possible games; he also assumed that the outcomes of this move have a (subjective) probability

distribution which is common knowledge to all players. Considerable progress has been achieved
in the theory of games of incomplete information using Harsanyi's original formulation (see

[81-[ 101 and references therein.)

J!
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A restriction in Harsanyi's formulation is the requirement of common knowledge of the
probability distribution of Nature's move. In many strategic situations (especially in

noncooperative games), this distribution is subjectively assessed by each player, and subject to

individJl biases and inaccuracies [27]. In this paper, we formulate a class of games, which we
call Subjective Games of Incomplete Informaticit, which relaxes Harsanyi's requirements of
common knowledge. Specifically, we allow each person to have his own subjective probability

distribution of nature's move; in addition, each person believes his subjective distribution is

common information, whereas it is actually secret information [15]. As a consequence,

requirments Al and A2 ame relaxed, and requirement A4 is modified in the sense that each player is

considered to be rational within his/her own subjective view of the game.

Various interesting issues arise because of our formulation:

QI. How are equilibrium strategies defined for subjective games?

Q2. How do these equilibrium strategies relate to the equilibrium strategies of the games I
studied so far?,

Q3. Does repetition of the game result in cooperation as in the case of the games studied so

far (e.g. [111)? Does rerxtition of the game alleviate differences in the subjective

assessments of the players and allow players to agree or an equilibrium strategy?
Q4. Is it possible to characterize the set of all equilibria for repeated subjective games?

To understand some of these questions, we shall consider a special class of games, namely
2x2 two-person non-zero sum games of incomplete information where the payoff matrices have a,

special structure.

The rest of this paper is organized as follows: In section 2, we present the model for
subjective games, and briefly discuss games of incomplete information and point ont the

differences between Harsanyi'- model and our model. In section 3, we study static subjective

non-cooperative games of incomplete information. In section 4, we consider infinitely repeated

non-cooperative subjective games of incomplete information. Conclusions are presented in section

5.
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SECTION 2: FORMULATION OF SUBJECTIVE GAMES OF INCOMPLETE INFORMATION

We shall develop our theory of subjective games based on the following key assumptions:

Si. Players have different probability assessments on nature's move.

$2. Each player thinks that the other players' a isessments are the saree as his.

S3. Players are Bayesian.

54. Each player is rational within his own subjective view of the game.

Assumptiom S2 implies that the rules of the game are not common knowledge to all the

playes, since each player thinks that the other players' assessments are the same as his, yet this

may not be !rue. Assumptions SI and S2 were previously used in the context of distributed

estimation and detection f 14].

More precisely, let N- represent the private information of player i about the game. This

information relates to the outcome of nature's move. In dealing with incomplete information, each
player takes a Bayesian approach. That is, each player assigns a subjective probability distribution

Pi

Pi Pi (blb2-...bi-"bn)

to nature's move and attempts to maximize the mathematical expectation of his own payoff Ji in

terms of this probability distribution. Furthermore, each player i assumes that Pi =Pj for all j,

whereas in the actual game, Pi and Pj may be different.

Comparing the mathematical model described above with Harsanyi's formulation, we note

th..i Harsanyi also assumes that each player assigns a subjective probability distribution Pi to

-'s move; although Pi and Pj may differ, all the distributions Pi are assumed to be common.

wJ•e,Ige to all players. In our formulation, any difference in subjective probabilities is secret

mfor,,ation. Moreover, each player is unaware that he has secret information.

• €°3
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I SECTION 3:
I STATIC SUBJECTIVE NON-COOPERATIVE GAMES OF INCOMPLKrE INFORMATION

3.1 Problem formulation

We consider the following static two-person non-zero sum game. Nature selects one of two

* games with the following payoff matrices:

Game 1:

(aa) (cb)
(3-1)

(b c) (d•d)

P. Game 2:

(b,b) (d,a)

(3-2)

(ad) (c,c)

L• We further assume that

a>c >b>d (3-3)

b+c>a +d (3-4)

* Player I can choose action X or p and player 2 can choose action a or t. Note that, because of

t';: 4



(3-3), each player has a dominant strategy in each one of the two games. So far, the statement of I
the pi blem and'the assumptions (3-3)-(3-4) are essentially the same as in 115]. However,

contrary to [15), we now assume that the two players have a different

probability assessment of nature's move. Let r be the true probability that nature selects game 1.

Let p, q be player l's and player 2's assessments of this event respectively. Assume p>1/2, q<1/2.

We will consider this problem under four differtnt tyies of information that a player may p
receive:

1. No information: In this case, none of the players is informed about the outcome of nature's
move.

2. Public information: In this case, both players are infcrmed about the outcome of nature's
move.

3. Private information: In this case, one player is informed about the outcome of nature's
move, whereas the other player is not. Moreover, this distribution of information is

comm on knowledge.
4. Secret information: In this case, one player is informed about the outcome of nature's

move whereas the other player is uninformed. Moreover, the uninformed player is 2z
unaware that his opponent is informed, and the informed player knows this.

The rational strategies in each of these situations are:

1. No Information~

In this case, player I plays • and player 2 plays t. The payoffs of the two players are:
JOI rc + (1-r)d, 

(3-5) .
I

and

J02= rb + (l-r)a. (3-6)

2. Public information

In this case, player 1 plays X. in Game 1 and gi in game 2. Player 2 plays o in game I and t in

game 2. Thus, the payoff of the players is

' ',



I
jB IjB 2  ra + (1-r)c. (3-7)

Define the value of information as follows: Vi the value of information to player i, is the payoff
of player i when he knows the outcome of nature's move minus the payoff of player i when no
player is informed about the outcome of nature's move.

In this case, the value of public information for players 1 and 2 is given by

vB 1 -r(a-c)+(1-r)(c-d) (3-8)

vB2= (2r-l)a +(l-r)c - rb (3-9)

3. Private Information

3a. Assume at first that player 1 is the informed player. Then he plays a in game 1 and g in
game 2. Player 2 plays Lr. The payoffs of the two players are

JP1 =c (3-10)

JP2 = rb + (1-r) c (3-11)

3b. If player 2 is th- informed player, then he plays a in game 1 and in game 2. If

p < (a-d)/(a+'c-b-d) = p* (3-12)

then player I will play l.L Otherwise, he will play •. The expected payoffs for player 1 are then

JP1 ; + (1-r)c (3-13)

JP 2 - ra + (l-r) d (3-14)

respectively.
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The payoff for player 2 is

JP2= c (corresponding to g±) (3-15)

JP 2* a (corresponding to ).) (3-16)

The value of information for the two players is:

vP 1 = (1-rXc-d) (3-17)

VP2=c-rb-(1-r)a if p<p*

(3-18)
= r(a-b) othervise

4. Secret Information

Assume at first that player I is secretly informed about the outcome of die chance move.

Then, he plays X in game 1 and g in game 2. Player 2 plays t. The payoffs of the two players are

SJCl= c(3-19)

JC2 rb + (l-)c (3-20)

The value of secret information to player I in this case is

vS I (I-.) (c-d) (3-21)

Assume now that player 2 is secretly informed. Then, he plays u in game I and T in game 2.

Player I plays k. The payoffs of the two players are

JCI ra+ (l-r) d (3-22)

i) c

JC2  a (3-23)

7



The value of secret information to player 2 in this case is

v = r(a-b) (3-24)

Let us discuss some interesting features of the solutions of these games. At first, note that

each payoff bimatrix is symmetric, hence in each one of de.; two games,the player aic
interchangeable. Thus, one expects that for the classical Bayesian game, in the case of public or

secret informatiot, the behavior of the informed and the uninformed player will be independent of
who is the informed and who is the uninformed player. For example, in the case of private or

secret information, if player I were the uninformed player and played X., we would expect that if
the situation were reversed and player 2 became the uninformed player :e would play a. Also, in

the case where no player was informed about the outcome of the chance move, the dominant

strategies would be (),a) or (;4,r). Consequently, the value of private, secret or public information
would be the same for both players. It can be easily checked that this is indeed the case when
p=q-r. However, this behavior is not observed when each player has his own subjective model of
the game. When player 1 is privately informed about the chance move, player 2 always chooses c

(the second column); on the other hand, if player 2 is privately informed about the outcome of the
c'•nce move, player I does not always play ;L (the second row). When player I is the secretly
informed player, player 2 always plays ' (second column); if player 2 is the secretly informed
player, player I always plays ). (first row). When no player is informed about the outcome of the

chance move, the outcome of the game is ('XT). These facts indicate that the value of private and

secret information is now different ,for each player, as is evident from the analysis above.

For the class of games considered in this section, the value of public, private and secret

information differs from player to player, whereas in the classical Bayesian framework, this value
does not depend on who is the informed and who is the uninfo,-med player. This phenomenon is
due to the differences in the initial probability assessments of the incomplete information.

Another interesting observation follows from the previous results. Consider the case where
player 2 is privately informed, p < p*, and r = 1/2. Then, the value of information for player 2 is i%

given by

8
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vP2 c.5 b -.5 a

if c< .5 a + .5 b, the value of private information for player 2 is negative! On the other hand, the

gain for player 1, the uninformed player, is equal to .5(b-d) which is positive. Thus, for the class

of symmetric games considered in this paper, we have a case where the value of private information

is negative for the informed player and the uninformed player benefits from the situation! This
phenomenon never occurs for this class of games in the classical Bayesian framework, where if the

value of private information is negative for the informed player, the uninformed player cannot

benefit either [15]. Even more surprising in this case is the fact that the informed player wants to

use his private information, whereas the uninfonned player wishes that the inforned player acted as

if he were not informed!

The reason for all these counterintuitive results and the differences between the subjective

game results and the classical Bayesian game results is that each player evaluates the game as well

as the behavior of his opponent in the game in terms of his own model and acts accordingly. Such -"J
subjective evaluations lead to behavior which would never occur in the classical Bayesian
formulation as evidenced by the previous analysis.

One issue that naturally arises in these games is the following: How do the players involved
in the game interpret its outcome? Do they realize that they have different models? If neither player
is informed about the outcome of the chance move player I expects that player 2 will use strategy a

and player 2 expects that player I will use strategy l.. At the end of the game, each player finds out -"A

that the outcome is the opposite of what he expected. Since each player assumes that his opponent

is rational, both players conclude that they have different models. Similar phenomena occur if one

of the players is either secretly or privately informed.

In the case of secret information, the secretly-informed player discovers at the end of the game

that his opponent's perception of the game is different from his. On the other hand, the uninformed

player may never discover that his opponent has a different perception of ihe game, or he may not %. W

be able to interpret his opponent's move in terms of his own model in which case he can conclude

that either his opponent has a different model of the game, or his opponent has secret information.

In the case of private information, the uninformed ph'yer is not in a position to discover at the

end of the game that his opponent has a different view of the game. The informed player may or

9
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may not discover at the end of the game that he and his opponent have inconsistent beliefs about the L i
game, depending on whether eq. (3-12) holds. Note that if both p,q > 1/2 or p,q < 1/2, the players

never discover the lifferences in their models.

In this section, we presented and analyzed a simple class of two-person non-cooperative

nonzero sum one stage subjective games of incomplete information, and showed how the

inconsistent beliefs of the players lead to counterintuitive behavior. An important issue which has,

not been discussed so far is whether the differences in beliefs between the two players are amplified

or smoothed out if the game is repeated over and over. We address this issue in the next section.
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SECTION 4:

INFINITELY REPEATED SUBJECTIVE GAMES OF INCOMPLETE INFORMATION

In this section, we consider the infinitely repeated version of the class of games studied in

section 3. First, we study the situation where no player is informed concerning the outcome of

Nature's move. Then, we consider the case of private information. For this class of games, we

show that repetition can alleviate differences between subjective models and lead to agreement

about the outcome of the game,. In addition, we show that the va!ue of private information is

always positive in this infinitely repeated game. Finally, we examine the effect of various

bargaining modelh on the outcome of the game.-.

Before we proceed with the analysis, lit's define the meaning of a solution to an

infinitely-repeated nonzero sum two-person game. According to the results of [I1 1,[ 16],[171, the

set of equilibrium outcomes of the infinitely repeated game are all the payoffs which are

individually rational [16]. Among these equilibrium outcomes, the set of efficient equihbria (also -

known as the coe cquilibria of the game) are the set of outcomes which are also Pareto optimal. A

pair of equilibrium strategies in the infinitely-repeated game will be a solution if and only if it

produces payoffs among the core equilibria of the infinitely-repeated game.

4.1 No Information I i -

Assume that neither player has information cor.cerning Nature's move. In this case, the .-
one-stage subjective expected payoff matrix of each player can be computed as in the previous .-

section. The set of obtainable payoffs for players I and 2 are given in figures, 4-1 and 4-2

according to player l's perception, and figures 4-3 and 4-4 according to player 2's perception. The
Oldividually rational outcomes for each player have been outlined in the shaded areas of the figures. iz

It is easy to see that the set of equilibrium outcomes of the infinitely repeated game, as perceived by

the two players, do not coincide. Moreover, the set of core equilibria are different according to the

perception of the two players. As far as player 1 is concerned, the set of core equilibriacontains P'-

only one possible ouxcome, (pa + (l-p)b, pa + (1-p)b), achieved by the strategy (Xc). The core of

the game for player 2 consists of all the points of the lines AB and BC. -4,,

Let S' denote the set of equili~rium strategy pairs, as perceived by player i, i=1,2. If either.

11 . -. 'i
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player plays a strategy not in Si, then the other player will detect an immediate inconsistency """

between the player's models and an equilibrium will not be reached. We can now define what are

equilibrium strategies in this class of games.

Dfinition: The set S of equilibrium strategies of the infinitely- repeated subjective game of

incomplete information is the intersection of S1 and S2 .

An immediate result follows from this definition:

Lemma 4. If a pair of strategies (1, ',2) e S, the players never realize that they have "ifferent
models. -.

For any (y1,y2) in S, each y' [111 consists of two parts: The strategy player i implements as long
as the other player does not deviate from his announced strategy, and the threat player i implements
if the other player deviates fr,.n his announced strategy. We must show that, whether deviations
from the announced strategy occur or not, no player finds out that they have different models.

Assume that both players follow their announced equilibrium strategies. Then, since (T ,1y2) £... S,
the reulting payoffs are individually rational according to each player's perception, so the players

canrot detect that they have different models.

Assume that player 1 (2) deviates from his announced equilibrium strategy and player 2 (1) detects
this deviation. Player l's (2's) threat consists of selecting the strategy which reduces player 2's

(I's) payoff the most; this strategy is ga ('c). From player 2's (l's) perspective, player l's (2's)
threat strategy is also g (t). Hence, when a deviation occurs the players cannot detect that they
have different models, because their opponent's threat strategies are the same as those predicted by

their own models. q.e.d.

12



4.2 Private information
_ _VI

Consider the infinite repetition of the game described in section 3, and assume that player I is

privately informed of Nature's move. The main feature of this game is that the uninformed player

can collect additional informado'n throughout the play of the game by watching the behavior of the

informed player. On the other hand, the informed player has to decide what information (if any) he

has to reveal to his opponent and at what rate. Various interesting questions can be asked about

this game:

1. Can revelation of private information be beneficial for the informed player?

2. What is the value of private information?

3. Does repetition alleviate the differences between the models of the two players?

4. Can the uninformed player take advantage of the private information of the informed
player?

To find the answer to these questions, we shall determine core equilibrium strategies of the

infinitely repeated subjective game. These core equilibrium strategies are strategies which result in

core equilibrium payoffs according to both players' subjective model of the infinitely repeated
game. The following results characterize these equilibrium payoffs.

Thern 4.2: There is a unique pair of payoffs corresponding to core equilibrium strategies in the
infinitely repeated subjective game when player I is privately informed of the outcome of Nature's

move. This pair is {ra + (1-r)c, ra + (1..r)c}.

Before proving this theorem, let's describe how the core equilibrium payoffs are determined. First,

the feasible region of payoffs for the game of incomplete informition according to each player's

perception is determined as the payoffs which are individually mational for each player[ 10]. Then,

the core equilibrium payoffs of each feasible region is determined by identifying the Pareto optimal

outcomes.

In order to develop the proof of theorem 4.2, we will need the following results concerning

infinitely rep%;ated nonzero sum games of incomplete information [ 101.

13
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Lemma .3 Player 2 can limit the actual and perceived payoff of player I to c by playing the pure

strategy c throughout the repeated game. This strategy is the Blackwell strategy [18] of player 2.

Proof: See Appendix.

Lemma .4: According to player l's perception, player I can limit the payoff of player 2 to pc +

(l-p)d. The strategy achieving this payoff is the maxmin strategy for the following infinitely

repeated zero sum game of incomplete information:

Gam I Gam2

X -a -b --b -a

-c -d -d -c

where Prob(Nature chooses game 1) p.

mma 4.5 According to player 2's perception player 1 can limit the payoff of player 2 to qd +

(l-q) c. The strategy achieving this payoff is the maxmin strategy for the infinitely repeated zero

\ sum game of incomplete information of lemma 4.4, where

Prob(Nature chooses Game 1) = q.

Lemmas 4.4 and 4.5 are direct consequences of the definition of the threat st-rategy and the results
of zero sum infinitely repeated games of incomplete information in [9].

Lemma 4.6 According to player l's perception, the payoff {pa + (1-p)c, pa + (1-p)c} is an

individually-rational equilibrium payoff. According to player 2's perception, the payoff

{qa + (1-q)c, qa + (1-q)c} is an individually-rational equilibrium payoff.

Proof: Individual rationality follows from Lemmas 4.3 and 4.5. The above payoff is achieved by

the following strategy: At the first stage of the game player l(the informed player ) plays X.if

Nature selects Game I and g if Nature selects Game 2, thereby revealing Nature's move to player

2. Player 2 can play any strategy at stage 1. For all subsequent stages, if Nature chose Game 1,

the players choose (X,o). If Nature chose Game 2, the players chcoose (t,t). If either playet

deviates, the other player implements his threat strategy of lemma 4.3 or 4.4. Note that neither

14
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player I nor player 2 can improve his payoff by deviating from the announced strategy, since the I
threat strategy yields a lower payoff than the equilibrium for the deviating player; consequently, the
strategies described above result in an equilibrium, according to each player's perception of the
game. The values achieved by these strategies are the values postulated in the Lemma. q.e.d.

Lmma 4.7- According to player l's perception, the payoff pa + (1-p)c is the most player I can
achieve in the infinitely repeated game. According to player 2's perception, the payoff qa + (I-q)c
is the most player I can achieve in the infinitely repeatcd game.

Proof: See appendix.

Proof of Theorem 4.2:

From Lemmas 4.6 and 4.7, the equilibrium payoffs of Lemma 4.6 are individually rational and

Pareto optimal according to both players' perceptions. From lemma 4.7, these equilibrium
payoffs are the unique payoffs in the core of the game according to each player's perception. In
order to achieve these payoffs, player I must reveal his private information concerning Nature's
move. Hence, all core equilibrium strategies for player 1 must reveal Nature's move in a finite
number of repetitions. Once Nature's move is common knowledge, each player can use his
dominant strategy in the appropriate Game, so that all core equilibrium strategies result in the
unique equilibrium payoffs for the infinitely-repeated game. q.e.d.

C lau 41 Assume both players follow the core equilibrium strategies described in the proof of
lemma 4.6. Then, the players do not realize that they have different subjective models.

Proof: As long as neither player deviates from his equilibr.'am strategy, they cannot discover the
differences in their model, since these strategies are core equilibrium strategies. Suppose player I

deviates from his equilibrium strategy. Such a deviation is immediately detected by player 2, who

switches to his threat strategy r as described in lemma 4.3. This strategy is independent of the
value of q, hence the players are unable to detect any difference in their subjective models.

Suppose player 2 deviates from is equilibrium strategy. Such a deviation is immediately detected

by player 1, who switches to his threat strategy as described in lemrna.4.4 This strategy is %'
described in ( 191 as follows: A set of lotteries is available to player I. Depending on the outcome
of Nature's move, a lottery is chosen by player 1. This lottery is performed and its outcome
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determines the move of player I for the remainder of the game. In o.-der for tie two players to I

realize that they have different models, the move of player I must have zero probability according

to the model of player 2. Using the results of [191, the maxmin strategy of player 1 is: According

to player I's perception, player I performs eithfer a lottery whose outcome is X with probability I or

a lottery whose outcome is X with probability 1/2. According to player 2's perception, player I

pearforms either a lottery whose outcome is g with probability I or a lottery whose outcome is X

with probability 1/2. Therefore, even when player I switches to his threat strategy, the players

never realize that their subjective models are different because there is no contradictory behavior.

q.ed.

C ai= For the game of theorem 4.2. the value of private information is positive for player

Proof: The value of private information for player I can be computed explicitly using theorem 4.2.

Since pa + (1-p)b is the only core equi- librium of the infinitcly-repeated game without private

information for either player, the expected value of information to player I is the diffe- rence

between the payoff of Theorem 4.2 and this payoff. This value is

VI =(1-p)(c-b) > 0.

Note also that

V2 = (1-q) (c-b) > 0,

so the private information of player I also has positive value for player 2. q.e.d

In sum, we have answered many of the questions asked at the beginning of this subsection.
Specifically, repetition of the game serves to alleviate the differences in the models of the players

and leads to eventual agreement on a common pair of strategies, and the value of private

information is positive for the informed'player, unlike the results for the static game of the previous

section. Note that, due to the symmetry in the game, a similar set of lemmas and theorems can be
5' established if player 2 were the informed player. When one player has private information, the

perceived core of the game for each player has a single pair of equilibrium payoffs, and repetition

of the game serves to eliminate the differences in initial probability assessments, in contrast with the

16

I
iI *.. .



situation when iither player has private information, wheie the perceived core of the game for

player 2 can ,oritin many additional equilibrium payoffs. The selection of equilibrium strategies

in this case ,s tie result .-" bargaining between the two players to decide which pair of core

equilibrium ?,'of• they will achi.ve. In the next subsection, we examine the effect of various

bargaining theoriies n the. outcome of the infinitely repeated subjective game without private

information.

4.3 The effect of UIj mg,7Jheories on the Outcome of a Subjective Infinitely Repeated Game of

Incomp21ete Inflr.P_,jM

In this section, we investigate the effect of the bargaining theories of Nash [21] and Zeuthen

[22,23] on the outcome of the infinitely repeated game of subsection 4.1. The core equilibrium

payoffs of the game according to player l's perception are the single point (pa + (I-p)b, pa +

(1 -p)b). According to player 2's perception, the core equilibrium payoffs of the game are the pairs

of points on the boundary of the shaded region of fig. 4-2. We show that, depending on the

bargaining model used by the players, they may or may not realize the differice in their models

during the course of bargaining.

Jheorem4.10:. Consider the bargaining problem for the infinitely repeated game of Section 4.1. If

the Nash bargaining mo.lI with moves consisting of the choice of strategies is used, the players

will agree on the core equilibrium strategy and never realize the differences in their models.

Proof: Nash's bargaining modei is a game in normal form where each player has only one move.

In this move, the player announces a strategy which achieves the payoffs corresponding to the

Nash bargaining solution, satisfying Nash's axioms [211. The maxmin values which each player

can guarantee himself are (pd + (1-p)c, pd + (1-p)c) according to player l's perception, and (qc +

(l-q)d, qc + (1-q)d) according to player 2's perception. In either case, the maxmin values lie on

the line x=y, as do points B and B' in figures 4-1 and 4-2. Hence, the payoffs corresponding to
Nash's bargaining solution corresp. Id to points B and B' in these figures. The strategies which
achieve these rayoffs are the pair of strategies (Xa), according to each player's perception. Thus,

the players will agree on the strategies announced and never realize the difference in their
underlying perceptions of the game. !

i I
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In the above result, players only exchanged their final bargaining strategies. When utility is

linearly transferable between the players, Nash's bargaining model with threats can be used. In

this model, players e":.thange threat strategies, then select the bargaining solution based on these

threat strategies. The players can detect the inconsistency between their models if the threat

strategies announced are inconsistent with the players' models.

Tbeorem 4.11: Assume that players use Nash's bargaining model with threats and transferable

utilities[28]. If

PSL .. L• = P*
a-d

then the players do not detect that they have different perceptions of the game. If p>p*, the players

detect an inconsistency in their perceptions of the game.

Proof: In Nash's bargaining model with threats and transferable utilities[28], the threat strategies

for the players, according to player l's perception, are the solutions of the zero sum game

ta

0 p(c-b) + (l-p)(d-a)

A -p(c-b) + (1-p)(d-a) 0

If p < p*, the optimal pair of threat strategies is (Ip,r). If p> p*, the optimal pair of threat strategies
is (ka). According to player 2, since q < 1/2, the optimal pair of threat strategies is (tr). Hence,

if p>p*, the players will detect an inconsistency in the announced threat strategies. If p<p*, the
threat strategies announced by each player will be consistent, and result in expected payoffs which

are on the x=y line. Hence, the Nash bargaining solution will be the same as the previous theorem,
and th, players will not detect the difference in their perceptions of the game.

Other bargaining models can lead to players discovering the inconsistencies in their models.

Consider Zeuthen's regular bargaining model [221-1231, which is a game in extensive form which

W
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allows bargaining to proceed in steps. We assume again that the moves of players arm strategies

corresponding to the players' payoff demands. Then; if the players do not reach an agreement in

one move, it is possible that player 2 (whose perception of the game is described by figure 4-2)

may propose a move which player I cannot interpret within the terms of his own model (e.g. player

2 may propose a move corresponding to a payoff which is in the core of his own game but not in

the set of equilibria of the game perceived by player 1). At that point, player I has a different

model of the game since, by assumption, he excludes the possibility of an irrational opponent.

Theorems 4.10 and 4.11 illustrate the role of the bargaining model on the outcome of the

subjective game. The outcome of the infinitely repeated subjective game depends on the number of

steps required to reach an agreement. If the model predicts that agreement is reached in one step,

each player may not have the opportunity to realize that the intended meaning of the move of the

other player was different from what he perceived it to be. On the other hand, if the model predicts

that more than one step may be required to reach an agreement, then the players may have the

oppu.-•nity to realize that their subjective perceptions of the game are different

194.
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SECTION 5. CONCLUSIONS

In this report, we formulated a class of "subjective games," where the players have different

perceptions of the rules of the game and are unaware of the differences in their perceptions. This
class of games is a generalization of the team problem of asymptotic agreement studied in [14]. We'..

developed a conceptual and analytical framework for studying the effects of these differences in "M

perception on the strategies used by the players. By studying in detail a specific class of symmetric

games of incomplete information, we showed that the properties of these "subjective games" are
different from the properties of similar Bayesian games. Specifically, many features of the

Bayesian games, such as the positive value of private information in symmetric games, are not
maintained when the ilayers' perceptions of the game are allowed to differ.

An important issue which arose from our formulation was whether the players discover that

their perceptions are different during the play of the garne. We showed that, in a static game,

players often discover at the end of the game that they have different perceptions. Infinite repetition
of the game, however, may alleviate the differences in the player' models, and lead to strategies

where the players do not discover that they had different initial perceptions. In addition, we
showed that, in an infinitely-repeated game, agreement on a core equilibrium strategy depends on

the bargaining model adopted by thn players in the game.

The rudimentary investigation reported here needs to be carried further. It is important to

characterize the classes of subjective games where the rational strategies are insensitive to the
differences in the perceptions of the players. In addition, our analysis should be extended beyond
the point wherm the two players reach an impasse. To proceed further, it may be appropriate to
formulate the comnlict situation as a bargaining problem which is perceived differently by each J
player. For such a bargaining problem, the players seek strategies which belong to the core of all
games. The bargaining theories of Harsanyi [23], Hearns [25], Kalai-Owen-Maschler 1241, Owen

[261 and Zeuthen [22] may prove useful in determining such strategies and could be the starting

point for further investigation.
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APPENDIX

Proof of Lemma 4.3:

To determine the payoff to which player I can be limited by player 2, it suffices to determine, the 'l b
apmroachable set for player 2 when he tries to minimize player l's payoff. We define the following

payoff matrix

[a,bl [C
0-

[b a] [dc]

The first (second) component of each entry of G gives the payoff to player I when game 1 (2) is

played. These payoffs are shown in figure A-I. The approachable set for player 2 is the shaded

area of payoffs of fig. A-I [9]. A point in this area is guaranteed by using the pure strategy c,

which is the Blackwell strategy [9] for player 2. When player 2 uses this strategy, player l's

payoff cannot exceed c. q.e.d.

Proof of Lemma 4.7:

The maximum payoff which player I can hope to achieve is an equilibrium payoff which is

individually rational for player 2.' To determine this payoff, we define the payoff matrix

[sa+(l-s)b, sa+(1-s)b] [sc+(l-s)d, sb+(l-s)a].

[sb+(l-s)a, sc+(l-s)d] [sd+(l-s)c, sd+(I-s)cJ

and let s vary from 0 to I. For '

O s (c - b) (A-I)

(c-b + a-d)

we obtain

21
'¢" .,



sb+(-s~aZ sd(I-~c Zsa+(-s~bz s+(I-~d. A-2

Prom Lemmna 4.5, the individually-rational payoff for the game with probability s is sd + (1-s) c.

As illustrated in figure A -2, the maximum payoff for player 1 when A- I holds is (I -s)c + sd.

F~or sin the range

s 1/2(A-3)

(c-b + a-d)
we get

sb+(-s~a sa+I-s~ sd(I-sc sc (1s). A-4

Figure A-3 illustrates the maximum payoff which can be obtained by player 1. After some algebra,
this payoff can be determined as

s2 fa-b)Y3d-3c+b-a) + &((a-b)(a+3c-b-3d') - b~bj&' + ad +b2 i +ab~bc-a-. (A-5)

s(a-b+d-c) +b - d

For s > 112, the situation is illustrated in fig. A-4. In this case, the maximum payoff which player

I can achieve is sa + (1-s) b. ~

According to [9], [201, the maximum payoff player 1 can achieve as s increases from 0 to I is
given by the least concave function which majorizes the payoff function as s varies from 0 to 1. As
ilustrated in fig. A-5, this function is described by

s~a + (1-s) c. (A-6)

Consequently, the maximum payoff player 1 can achieve when s =p, according to his perception,
is given by pa + (1-p) c. The maximum payoff he can achieve according to player 2's perception, is
given by qa +( (-q) c. q.e.d.
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[p~c+(1 -p)d,pb+(1 -p)la

r

[b(-P)a,pc+(I-P)dI

1pd+( I -P)c pd+(1 -PC

PAYOFF OF PLAYER 1

Figure 4- 1. Individually Rational Payoffs According to Player 1, p>p*.

N pb+(l -p)a~pc+(l -p)dl p) pbp*1-~

CLa

0

pd+(1 -p)c,pd4(1 -p)cJ

PAYOFF OF PLAYER I

Figure 4-2. Individually Rational Payoffs According to Player 1, p~*
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(qc+( 1 -q)d ,qb+( 1 -q)a I
Iqd+(1 -q)c,qd+(1 -q)cI

CL

CL.

Jqb+(1 -q)a,qc+(1 -q)dJ

P'AYOFF OF P1LAVER I

Figure 4-3. Individually Rational Payoffs According to Pla,,cr 2, q < 1 - *

Jqc+(I -q)d,qb+C1 -q)a I

A
[qa+ I-q)b,qa+(I-q~bJ

-IB

C
C0 [ d( q cq +l-~

[qb+(1 -q)a,qc+(l -q)d]

PAY OFF OF PLAYER I

Figure 4-4. Individually Rational Payoffs According to Player 2, q > 1 - *
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[a,b]
-0

[c,d]

PAYOFF OF GAME 1, PLAYER 1

Fiure A-I: Payoff to Which Player 1 can be Limited by Player 2

[sc+(1 -s)d,sb+(1 -s)a]

[sd+(1 -s)c,sd+(1 -sjcl

MAXIMUM PAYOFF

! sa+(1 -s)b,sa+(1 -s)b]

I PAYOFF OF PLAYEP 1

Figure A-2. Maximum Payoff of Player I when 0 < < I -
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sc+(1 -s)dsb+(1 .s)aJ

rsa+(1 -s)bsa+(1 -s)bI

MAXIMUM r��i..a-r

I
0.. Isd+(1-s)csd+(1 -s)cI

IsbN 1 -s)asc+(1 -s)d]

PAYCFFOF PLAYER 1

Figure A-3; Maximum Payoff of Player 1 when 1 - � s � 1/2.

[sa+(1 -s)bsa+(1 -s)b)

MAXIMUM PA?�XF

I I
[sci+(1 -s)csd+(1 -s)cJ

PAYOFF OF PLAYER 1

Figure A-4. Maximum Payoff of Player I when 1/2 • s • 1.
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